
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 14, NO. 2, MARCH 2010 425

Structural Action Recognition in Body Sensor
Networks: Distributed Classification

Based on String Matching
Hassan Ghasemzadeh, Student Member, IEEE, Vitali Loseu, Student Member, IEEE,

and Roozbeh Jafari, Member, IEEE

Abstract—Mobile sensor-based systems are emerging as promis-
ing platforms for healthcare monitoring. An important goal of
these systems is to extract physiological information about the sub-
ject wearing the network. Such information can be used for life
logging, quality of life measures, fall detection, extraction of con-
textual information, and many other applications. Data collected
by these sensor nodes are overwhelming, and hence, an efficient
data processing technique is essential. In this paper, we present a
system using inexpensive, off-the-shelf inertial sensor nodes that
constructs motion transcripts from biomedical signals and iden-
tifies movements by taking collaboration between the nodes into
consideration. Transcripts are built of motion primitives and aim
to reduce the complexity of the original data. We then label each
primitive with a unique symbol and generate a sequence of sym-
bols, known as motion template, representing a particular action.
This model leads to a distributed algorithm for action recognition
using edit distance with respect to motion templates. The algorithm
reduces the number of active nodes during every classification deci-
sion. We present our results using data collected from five normal
subjects performing transitional movements. The results clearly
illustrate the effectiveness of our framework. In particular, we ob-
tain a classification accuracy of 84.13% with only one sensor node
involved in the classification process.

Index Terms—Body sensor networks (BSNs), collaborative sig-
nal processing, distributed computing, motion primitives, physical
movement monitoring.

I. INTRODUCTION

ADVANCES in wireless communication, sensor design,
and microelectronics have enabled the development of

tiny sensor platforms that can be integrated with the physical
environment of our daily lives. The new generation of wire-
less sensor networks, formally known as body sensor networks
(BSNs), is promising to revolutionize healthcare system by pro-
viding continuous and ambulatory health monitoring. They find
applications in rehabilitation, sports medicine, geriatric care,
gait analysis, and balance evaluation.

Many movement monitoring applications require knowledge
of what movement the subject is performing. This knowledge
can be divided into three categories based on the level of abstrac-

Manuscript received February 18, 2009; revised August 10, 2009. First pub-
lished December 11, 2009; current version published March 17, 2010.

The authors are with the Department of Electrical Engineering, University
of Texas at Dallas, Richardson, TX 75080 USA (e-mail: h.ghasemzadeh@
utdallas.edu; vitali.loseu@utdallas.edu; rjafari@utdallas.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITB.2009.2036722

tion of the conclusion: 1) motion; 2) action; and 3) activity. The
most tangible category is the motion that represents the position,
velocity, and acceleration of all body parts at a given time. These
characteristics can be directly observed by BSNs; however, they
do not provide a high enough level of abstraction for realistic ap-
plications. Actions belong to a higher level category and refer to
the basic motion sequences or static postures. Actions are gen-
erally sequential and rather consistent, e.g., standing, moving
from sitting to standing, walking, and jumping. While actions
provide more information than motions, they lack realization
of intelligent intent in human behavior. This role is filled with
the highest level of motion abstraction called activity. Common
activities include cooking, talking with friends, teaching, and
brushing teeth.

The additive hierarchical representation of human movements
is very similar to the representation of human speech: raw
sounds are divided into phonemes, which are further grouped
into words, which are grouped into sentences [1]. Phonology
exclusively focuses on sound, ignoring physical movement of
the tongue and throat, and cues from facial expressions. Simi-
larly, raw sensor data can be used to build sequences of motions,
which can be further grouped into actions and then activities.

We are primarily concerned with the accuracy of action recog-
nition while respecting the inherent limitations of our sensing
platform. In BSNs, sensor nodes are usually arranged in a star
topology with a base station responsible for processing sensing
data. Approaches that make this assumption employ centralized
algorithms with the base station as the coordinator to reduce
computational stress on individual sensor nodes. This can result
in nodes forwarding a significant amount of data to the base
station for signal processing. There are two problems with this
approach. First, communication generally consumes more en-
ergy than local computation [2]. From the energy preservation
point, it is more beneficial to have signal processing on individ-
ual nodes. Second, the level of interference in wireless networks
depends on the amount of data that needs to be transferred [3].
Thus, decreasing the amount of data sent over the network can
lower the number of retransmissions and increase the system
lifetime. Both these factors warrant the need for creating a dis-
tributed model, where nodes classify test data locally and make
the overall decision based on a subset of local decisions.

This study presents a novel framework for action recognition
based on the edit-distance concept. The framework relies on mo-
tion transcripts. Each movement is divided into several segments
each with a consistent physical pattern. The algorithm to create

1089-7771/$26.00 © 2009 IEEE

426 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 14, NO. 2, MARCH 2010

motion transcripts will maintain temporal and structural prop-
erties of the observed sensor readings. This representation of
human movements is used for local classification. A distributed
algorithm is then utilized that produces a global classification
decision based on a subset of results generated by individual
sensor nodes. The distributed nature of the algorithm along with
the compact representation of movements using transcripts en-
able our system to lower the amount of information stored at
individual nodes, and to minimize the amount of data passed
in the network. Furthermore, with the dynamic selection of the
nodes needed for classification, the overall number of active
nodes is reduced.

II. RELATED WORK

Reducing the amount of active nodes is a common approach
for power optimization and wearability enhancement in BSNs.
As recognition systems grow in size and expand to distinguish
many physical actions, so grows the number of sensors that these
systems require. However, only a subset of sensors is needed to
recognize most of the individual actions. Keeping other sensors
operational while their input is not considered by the system is
wasteful. Zappi et al. [4] propose to optimize the system energy
consumption by selecting the required subset of sensors with the
help of the metaclassifier sensor fusion. As a result, sensors are
awakened only when their input is needed to satisfy correctness
property. Ghasemzadeh et al. formulate coverage problem in [5]
in the context of movement monitoring using inertial on-body
sensors. Their technique focuses on the minimum number of
nodes that produces full action coverage set. Another way to re-
duce the number of active nodes is to keep track of the performed
motions and pay attention only to a subset of sensors that can
observe transition out of the current motion [6]. Previous studies
done in [7] show that only a few sensor nodes are required to
correctly classify a small action set. An additional sensor node
needs to be added to the system if a new action is added to the
action set, and it cannot be uniquely identified by existing sen-
sors. While it is easy to analyze any given action set and come
up with an optimal number of sensors and sensor placement,
the task is not trivial for a generic action set. To potentially be
able to classify a large number of actions and keep the num-
ber of active nodes low, a distributed classification scheme can
be employed. Instead of collecting information from all of the
sensor nodes to make the final decision, a distributed algorithm
collects information only from a subset of sensor nodes.

The concept of primitives has provided an efficient represen-
tation of human movements both in computer vision and in wire-
less sensor domains. Using motion primitives as building blocks,
Guerra-Filho et al. [8] study decomposing angles of body seg-
ments, calculated from cameras, into a well-representative lan-
guage called human activity language (HAL). As another ex-
ample, Guimarães and Pereira in [9] investigate construction of
context-dependent grammar known as discrete clause grammar
(DCG) by combining atomic motions. DCGs enable rules to be
formed using simple logic statements. They form a hierarchy of
abstraction that begins with feature extraction and uses unsuper-
vised classification at each step to group lower level primitives

TABLE I
COMMONLY USED TERMS

into higher level primitives. The idea of unsupervised learn-
ing in a recognition system based on motion primitives is also
discussed in [10] and [11], where authors try to identify ac-
tion primitives from motion capture data. Finally, Niwase et
al. [12] introduce a statistical technique for synthesizing walk-
ing patterns, where the motion is expressed as a sequence of
primitives extracted using a hidden Markov model (HMM). To
simplify computation, further primitives can be represented as
string templates. This idea is explored in [13], where Fihl et
al. use edit distance to distinguish between motion primitive in
3-D movement classification task. Similar idea is used in [14],
where Stiefmeier et al. use edit distance for action/posture clas-
sification in a BSN. They further argue in favor of this approach
by stating that only integer arithmetic operations are required
for successful algorithm deployment, making it suitable to run
on sensor nodes.

We propose a concept of combining primitives extracted from
inertial data into transcripts that maintain temporal and struc-
tural properties of the observed sensor readings. Based on prop-
erties extracted from edit-distance calculation, we define a novel
distributed algorithm for action recognition. To the best of our
knowledge, no previous work has been done on development of
a distributed classification algorithm based on the properties of
motion transcripts.

III. SYSTEM OVERVIEW

In this section, we briefly describe the architecture of our
system and signal processing flow for action recognition. Table I
defines some of the terms that are used throughout this paper.

A. Sensing Platform

Our system consists of several XBow TelosB [15] motes with
custom-designed motes. Each sensor board has a triaxial ac-
celerometer and a biaxial gyroscope. The accelerometers are
LIS3LV02DQ with 1024 LSb/g sensitivity and are used in 2 g
mode for the experiments. The integrated dual-axis gyroscopes
IDG-300 used for this study have a 2 mV/ ◦ /s sensitivity. Each
node is powered by a Li-ion battery and samples the sensors at
a certain rate, performs local processing, and can transmit col-
lected data wirelessly to other nodes. In particular, each mote
can send the data to a base station. For our experiments, the
base station is a node without a sensor board that forward the

GHASEMZADEH et al.: STRUCTURAL ACTION RECOGNITION IN BSNs: DISTRIBUTED CLASSIFICATION BASED ON STRING MATCHING 427

data to a PC via universal serial bus (USB). Furthermore, two
Logitech webcams are used to record video of all trials. The
video is used only as a gold standard to mark the start and end
times associated with movements. For the prototype that will
be developed in this paper, the sensor readings and video are
collected and synchronized in MATLAB.

B. Signal Processing

Our signal processing consists of the following steps.

Data collection: Data from each body-worn sensor is obtained
at 50 Hz. The sampling rate is chosen to satisfy the Nyquist
criterion [16].

Preprocessing: The data collected at each node is locally filtered
using a five-point moving average to reduce high-frequency
noise [5].

Segmentation: The signal is partitioned into segments that rep-
resent a complete action [17].

Feature extraction: Features are extracted from a small moving
window centered about each point of the signal segment. The
features include mean, standard deviation, root mean square,
and first and second derivatives. Intuition behind choosing
this set of features is that the aforementioned features are
computationally inexpensive that can be executed on our
light-weight sensor nodes. Furthermore, their effectiveness
in capturing structural patterns of motion data has been pre-
viously established by experimental studies [18].

Primitive construction: Each point is clustered based on the fea-
tures calculated for the window surrounding it. Each cluster
represents a movement primitive.

Per-node transcript generation: A transcript is built by noting
where each primitive begins and ends based on the mem-
bership of the data points to a cluster. The transcript is
then transformed into a sequence of characters over a finite
alphabet.

Template generation and pattern recognition: Transcripts gen-
erated by individual nodes are sent to the base station, where a
template is generated for each trial by combining transcripts
received from all sensor nodes. A central classifier is then
built, which makes a global decision on the current move-
ment that occurred in the system. Deployment of a central
classifier is not efficient in terms of communication power
and bandwidth. Despite its inefficiency, we will explore cer-
tain properties within the central classification strategy that
would enable the development of an effective and fast dis-
tributed algorithm.

IV. MOTION TRANSCRIPTS

A physical movement can be divided into a sequence of sev-
eral smaller motions. A transcript of this movement, with regard
to the motions, would record order and timing of the motions.
For example, a transcript for the foot during walking could con-
sist of 1) lifting the foot; 2) moving the foot forward; 3) placing
the foot on the ground; and 4) bearing weight on the foot, with
certain periods of time associated with each primitive. The pat-
tern repeats as long as walking continues. At the same time,

a transcript for the hip consists of: 1) rotate clockwise and
2) rotate counterclockwise, repeatedly.

Movement transcripts consist of adjacent, nonoverlapping
segments labeled as a particular motion primitive. One way
to generate movement transcripts is to independently label each
sample as a given motion primitive. We determine the charac-
teristics for each data point in our signal by extracting features
described in Section III-B from a moving window centered
about the current point. The motion primitives should be found
without specific knowledge of the movements, but based on pat-
terns in the signal. Lack of prior knowledge of the structure of
the dataset makes construction of primitives a challenging task.
A well-studied technique for grouping similar observations is
clustering [19]. We use clustering analysis to group data points
with consistent features to form a primitive.

Our model employs two steps for generating movement tran-
scripts: 1) clustering of each data point in a movement to find the
set of primitives and 2) labeling to map each primitive to a char-
acter over an alphabet. In the following sections, we elaborate
on these steps.

A. Primitive Construction and Labeling

Clustering deals with the problem of finding patterns in a
dataset in an unsupervised manner. Data points (represented
by a feature vector) in a cluster are similar and points in dif-
ferent clusters are distinct. Several clustering methods such
as K-means [20], hierarchical [21], and probabilistic-model-
based [22] clustering have been developed. The K-means algo-
rithm starts by selecting K centroids, either randomly or using
heuristic initialization. It assigns each point to a cluster it is
nearest to and recalculates the cluster centroids. It repeats the
previous procedure until some convergence criterion is met. In
agglomerative hierarchical clustering, each data point is initially
considered as a cluster. At each stage of the algorithm, similar
clusters are grouped together based on some distance measure.
On the other hand, model-based clustering [23] assumes that
data are generated by a mixture of probability distributions in
which each component represents a different cluster. In partic-
ular, Gaussian mixture models (GMMs) create clusters by rep-
resenting the probability density function of the data points as a
mixture of multivariate Gaussian distribution. GMM is a pow-
erful probabilistic model that has been widely used in speech
processing. Because our transcript generation approach is sim-
ilar to speech processing, we use GMM to define the primitives
from a set of training actions.

Primitives of movements are created by mapping extracted
features into K clusters. The kth primitive is associated with a
cluster ωk in the model that has a mean vector µk . Each cluster
generates data from a Gaussian with mean µk and covariance
matrix σ2

k I . Given an observation Oi (ith feature vector), GMM
finds the cluster corresponding to that vector. It computes �ik ,
the probability of the cluster k’s responsibility for accommodat-
ing observation Oi . This probability is given by

�ik = P(k|Oi) =
P(Oi |k)P(k)

P(Oi)
(1)

428 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 14, NO. 2, MARCH 2010

where P(Oi |k) is the Gaussian function for cluster k and is
defined by

P(Oi |k) = g(Oi ;µk , σk) (2)

and P(Oi) represents the prior probability that can be calculated
by marginalization of joint probabilities. P(k) is the mixing
parameter for component k in the model that is equal to the
number of observations belong to that cluster divided by number
of all observations. This value is given by

P(k) =
∑

i(πi ; i = k)
∑

i πi
(3)

where πi is a binary value indicating membership for observa-
tion Oi .

Therefore, the responsibility probability can be written as
follows:

�ik =
g(Oi ;µk , σk)P(k)

∑
k P(Oi, k)

(4)

and calculated for each observation, using a combination of
Gaussian and mixing parameters. The process can be repeatedly
executed to assign probability to all observations.

We use expectation–maximization (EM) [24] to find the pa-
rameters of the mixture model. This algorithm is iterative and
has two steps: expectation and maximization. The algorithm
starts with initial guess for parameters of the mixing model.
In the expectation step, partial membership of each observa-
tion is computed using expected measures for the membership
values of each observation. The probability �ik is then calcu-
lated based on estimated parameters. In the maximization step,
the Gaussian and mixing parameters are updated by maximizing
the maximum likelihood function. As the number of components
is unknown a priori, we perform multiple runs of the EM algo-
rithm for different values of K. The optimal number of clusters
and the problem of choosing the best model are evaluated based
on the Bayesian information criterion [23]. Each data point can
be assigned to a primitive by selecting the cluster that maximizes
the posterior probability. We construct a transcript of movement
by noting where each primitive begins and ends based on the
membership of data points to a cluster.

The second step in our transcript generation is to assign labels
to the primitives. Each movement can be described as a series of
primitives. We label each primitive with a unique symbol. The
transcript is then transformed to a sequence of symbols over a
certain alphabet, which is unique for each sensor node.

Fig. 1 shows the transcript for a synthetic 1-D signal. The
primitives are generated with GMM approach, labeled and col-
ored. For example, primitive “G” corresponds to a portion of the
signal with a positive slope and “W” represents a portion with
positive value of the second derivative. Note that each primitive
maintains its temporal characteristics. Since duration of both
“G” and “M” is short in the original signal, the same is true in
the transcript. This example clearly verifies that primitives can
capture signal segments that exhibit consistent patterns.

Definition 1: Given an observation Oij of action Aj made by
sensor node si , a transcript Tij is generated by our techniques

Fig. 1. Example of motion transcripts generated for a 1-D synthetic signal.

and is defined as a finite sequence of symbols from an alphabet
Σi .

Each sensor node builds its transcripts independent of the
patterns observed by other sensor nodes. Therefore, each node
requires a separate alphabet Σi (i ∈ {1, . . . , n}). Thus, symbols
used for different nodes are mutually exclusive.

B. Template Generation

Making a decision on the current movement occurring in
the system requires a predefined classifier that operates at the
base station. Such a classifier receives data from several sen-
sor nodes and makes a decision by combining the data using
a fusion scheme. Similarly, when developing a distributed al-
gorithm for action recognition, each node receives data from
another node, performs local processing, and forward its results
to the next node. As a result, a fusion policy is still employed by
individual nodes to provide more informative observations to
other nodes in the network. Traditional methods of constructing
the data-fusion function over a feature space take input from
different sources. In our framework, however, each sensor node
generates a 1-D feature space in the form of transcripts. To
enable the use of traditional classifiers, e.g., k-nearest neighbor
(k-NN) [19], a fusion technique is required to represent each trial
of a movement by integrating spatially distributed transcripts.
For this reason, we make a template for each trial by combining
its transcripts from all sensor nodes. Our template generation
is a simple algorithm that produces a new transcript, i.e., tem-
plate, by concatenating all transcripts of the same trial. In the
following, we present a more formal definition of a template.

Definition 2: The concatenation of n given strings
S1 , S2 , . . . Sn yields another string S, where all symbols of
Si follow by all symbols of Si+1 as

S = Concat(S1 , S2 , . . . , Sn). (5)

Definition 3: Given a set of n transcripts T1j , T2j , . . . , Tnj

associated with a certain trial of movement Aj and generated by
n sensor nodes, the trial is represented by the template TPLj =
Concat(T1j , T2j , . . . , Tnj).

Each transcript Tij is associated with a length �(Tij) that is
equal to the total number of symbols that form the transcript.
Therefore, the length function is additive with respect to the
string concatenation.

GHASEMZADEH et al.: STRUCTURAL ACTION RECOGNITION IN BSNs: DISTRIBUTED CLASSIFICATION BASED ON STRING MATCHING 429

V. ACTION RECOGNITION

Action recognition aims at classifying human movements
into predefined actions. Movements are mainly postural motions
such as “sit to stand,” “stand to sit,” “kneel,” and “sit to lie,’
which can be specified by the start and the end of the signal
real. Taking into consideration the compact representation of
physical movements using motion transcripts, a new movement
can be classified in two ways. In the first method, a central
classifier is designed at the base station, where the movement
is labeled according to an existing training model. The second
approach, however, uses in-network processing to make a final
decision on the current movement by combining data from most
informative nodes and converging to a final decision. In this
section, we elaborate on both techniques.

A. Centralized Architecture

For an observation associated with action Aj , each sensor
node si generates a transcript Tij over an alphabet Σi . In a
centralized architecture, all sensor nodes transmit their local
transcripts to a base station. For each observation of action
Aj , a template TPLj is then obtained by the base station. On
observing an unknown action, a classification algorithm is used
by the central node to classify that action as one of the movement
based on which the classifier is already trained.

A number of classification algorithms have been used in
the field of pattern recognition and machine learning. The k-
NN [25] is a simple and scalable algorithm that assigns an
unknown sample to its closest class, according to a distance
measure. Distance measure can quantify the level of similarity
between an unknown movement and each sample in the training
set. Euclidean distance is widely used as the similarity measure
when the training set is constructed based on numerical values.
In our system, however, each movement is represented by a
sequence of characters. Therefore, a different similarity metric
is required to find the difference between two strings. The edit
distance [26] is a well-known metric for measuring the amount
of difference between two character sequences. The edit dis-
tance between two strings is given by the minimum number of
operations needed to transform one string into the other, where
an operation is defined as an insertion, deletion, or substitution
of a single character.

Let Tij be a transcript generated by a node si for an unknown
action Aj . For each class Cij , let Tiq be the closest transcript to
Tij . A 1 -NN classifier assigns Aj to the class Aq̂ such that

q̂ = arg min
q

δ(Tij , Tiq) (6)

where δ(Tij , Tiq) represents the value of the edit distance be-
tween transcripts Tij and Tiq .

B. Distributed Paradigm

In the centralized architecture described earlier, when an un-
known action occurs, all sensor nodes must transmit their local
transcripts to the central node for the purpose of global clas-
sification. In a distributed scenario, however, each node makes
a local decision on the target movement and may decide to

propagate its local results to the next node in the network. The
amount of data transmitted over the network can be reduced
to only a subset of the nodes that contribute to the classifica-
tion of the movement. In this section, we develop a distributed
algorithm for action recognition that needs a smaller number
of the nodes to make a decision while maintaining classifica-
tion accuracy comparable to the centralized architecture. We
explore an important property of classifying movements us-
ing transcript representation prior to describing our distributed
algorithm.

1) Additive Property: This property implies that the sum-
mation of edit distances computed locally is equal to the edit
distance of the overall corresponding template. We note that
nodes si and sk construct their transcripts using separate alpha-
bets Σi and Σk . Edit distance increases as a result of insertion of
a character, deletion of a character, or substitution of an existing
character with another. It can be shown that the edit distance
is additive under each one of the above operations. Further-
more, edit-distance calculation proceeds linearly and increases
the sum by only 1 at a time (based on the operation performed),
which means that any combination of the operations described
earlier is also additive.

A direct consequence of the additive property of the edit dis-
tance is that a global decision can be made by calculating edit
distances locally and adding them in the network to find the
most similar movement. From (6), assume a 1 -NN classifier is
employed to assign an unknown movement to one of prespec-
ified actions. Each sensor node makes its own training model
by generating local transcripts. When an unknown action Aq

occurs, node si generates a transcript Tiq representing a new ac-
tion, which we need to classify. In contrast with the centralized
model, this time, each node si measures distance between the
new movement Tiq and nearest trial within each local class. For
each class Cij within the model, assume Tij represents the near-
est trial to Tiq . The classifier then operates, according to (7), as

ĵ = arg min
j

n∑

i=1

δ(Tiq , Tij). (7)

It then assigns the new movement Aq to Ciĵ . Target action is
identified by adding edit distances up from all sensor nodes and
finding the movement for which the summation has smallest
value, pointing to the nearest class to the test trial.

The idea behind our distributed algorithm is similar to the
basic principle behind classification. If the classification works
correctly, the value of only one movement’s classifier will be
below the threshold. This means that once the summation of
distance values from a subset of nodes exceeds the threshold,
the corresponding classifier is bad and no further computation
for it is needed. To capitalize on this property, we create the
ordering where the largest distance values are added first. They
are more likely to make the summation exceeding the threshold
and invalidate bad classifiers early.

2) Algorithm: The algorithm assumes that each node pro-
cesses data locally, generates transcripts, and measures distance
between an unknown trial and every class of movements. Each
node assesses reliability of its own decision. Communication
is initiated by the node that has the most reliable information

430 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 14, NO. 2, MARCH 2010

for classification. The computation is executed by a series of
the nodes until the solution converges. Each sensor node main-
tains a data structure, including its local computation, as well as
statistics received from other nodes. In particular, each node si

maintains a timer variable τi that represents the time left for the
node to initiate communication. It also keeps track of recogni-
tion convergence by a variable target movement vector (TMV)
that initially contains all actions as possible target movements.
As the algorithm proceeds, each node may decide to discard
some movements from the TMV. Furthermore, each node si

maintains a distance vector (DV) to evaluate confidence level of
classification. This vector stores the distance between the new
action and all classes within that node, and is gradually updated
as a node receives corresponding distances from other nodes.
The algorithm takes several steps as follows.

Step 1 (Initialization): Each sensor node si classifies an un-
known movement Aq as Aĵ and forms its distance vector DVi .
It further sets a timer τi to have an inverse relationship with the
average of distances between Tiq and all classes Cij , excluding
the target class Ciĵ . Once τi expires, the node starts transmit-
ting its local statistics. These operations are formulated in (8)
through (11) as follows:

DVi = {δ(Tiq , Ti1), . . . , δ(Tiq , Tim)} (8)

ĵ = arg min
j

δ(Tiq , Tij) (9)

∆i =
1

m − 1

∑

j �= ĵ

δ(Tiq , Tij) (10)

τi ∝
1

∆i
. (11)

Our choice of ∆i is inspired by confidence estimation of
classification in machine learning and pattern recognition. The
confidence measure is usually defined based on the minimum
distance for which the class prediction changes [27]. In a 1-NN
classifier, it is equal to the distance to the second closest class.
However, our pruning-based distributed classifier aims to reduce
the number of nodes contributing to classification. Therefore,
the distance measure ∆i must be chosen to prune larger number
of actions per node. The intuition is that large ∆i corresponds
to a set of large distances between Tiq and existing classes. A
large distance between Tiq and a class Tij suggests that it is less
likely that Tij is associated with the target class.

Step 2 (Transmission): When the value of the timer τi be-
comes zero, the node si starts broadcasting its local statistics,
including DVi and TMVi . This node will never need to transmit
again for detecting current action. Therefore, it can turn its radio
off saving power until a new action occurs.

Step 3 (Update): On receiving data, each node sk first ter-
minates its timer to avoid the scheduled transmission. It then
updates its local distance vector DVk by adding corresponding
values from TMVi provided by the sender node si . The receiver
further updates the target movement vector TMVk by rejecting
the movements that are far enough from the target class. To do
so, the node sk discards those movements Aj that have an ac-
cumulate distance greater than or equal to a threshold εj . The

receiver also checks conditions for termination. Specifically, it
checks the convergence vector TMVk that contains possible
movements left. If only one movement is left in the vector, the
node declares a convergence and reports that movement as the
target action. It then broadcasts a message to all the remain-
ing nodes to stop their scheduled transmission. However, if
more than one action is left in TMVk , the node would schedule
a transmission by resetting its timer, as discussed previously.
These operations are summarized in Algorithm 1. The algo-
rithm proceeds through steps 2 and 3 until it uniquely identifies
an action as target movement.

3) Choice of Epsilon: Our distribute algorithm considers a
complete list of movements when it starts. As it goes after
different nodes, the system tends to disqualify those actions
that have a large distance to the test trial. The pruning decision
described in Algorithm 1 is made according to the value of εj ,
which is defined for every movement Aj , as follows

εj =
n∑

i=1



 1
Mj

∑

s �=t

δ(T s
ij , T

t
ij)



 (12)

where Mj represents the number of samples in class Cij and
for every training trial “t,” trial “s” refers to the trial that has
minimum distance with “t.” For each movement, we calculate
the distance between each trial and its closest sample. By taking
an average over all such pairs of the trials and adding value
from all the nodes, we compute the maximum value we expect
to get when an unknown movement is classified as this class.
During system training, εj is calculated for every training class.
During classification, once the summation of distance values
from a subset of nodes exceeds this threshold the corresponding
movement is disqualified and no further computation for it is
needed. The choice of epsilon would determine the performance
of the classifier. However, our proposed technique can be applied
independent of choice of epsilon.

4) Augmenting Classification: The criterion δ(Tkq , Tkj) ≥
εj in Algorithm 1 for rejecting movements from further pro-
cessing is determined in a conservative way. This method may
require the algorithm to go after more sensor nodes that it actu-
ally needs to make a classification decision. However, the crite-
rion can be modified for a faster convergence. Depending on the
classification accuracy, designer may decide to use different cri-
teria. Algorithm 2 shows one of the approaches that updates the
value of εj dynamically based on the number of nodes already
visited.

In Algorithm 2, nv is the number of nodes already considered
for classification, n is the total number of sensor nodes, and b

GHASEMZADEH et al.: STRUCTURAL ACTION RECOGNITION IN BSNs: DISTRIBUTED CLASSIFICATION BASED ON STRING MATCHING 431

TABLE II
EXPERIMENTAL MOVEMENTS

Fig. 2. Sensor node and subject. (a) Mote with custom-designed inertial sensor
board and battery. (b) Subject wearing seven sensor nodes.

is a tunable parameter that can be adjusted by the designer to
obtained desired classification accuracy. (nv + b)/n represents
the fraction of εj that is required for classification termination.

VI. SYSTEM PROTOTYPE

In this section, we present procedures for developing our
action recognition framework. Moreover, we demonstrate the
effectiveness of our system using a prototype developed in our
research laboratory.

A. Data Collection

We developed our trial product for identifying ten transitional
movements listed in Table II. The experiments were carried out
on five subjects, three males and two females, all between the
ages of 25 to 55 and in good health condition. Seven sensor nodes
were placed on the subjects, as shown in Fig. 2(b). Subjects were
asked to repeatedly perform each specific motion ten times.

1) Node Placement: Current node placement methodologies
are either intuitive or analytical. Intuitive methods [17] posi-
tion sensor nodes according to the set of movements of interest
and physical model representing human body. Analytical ap-
proaches [4], [5] strive to find optimal positioning of the sensor
nodes by searching minimum number of nodes, among an ex-
haustively distributed sensor nodes. In this paper, we follow an
intuitive approach, and therefore, distribute seven sensor nodes
on different body segments, as shown in Fig 2(b).

2) Sampling Frequency: The motes were programmed to
sample sensors (accelerometer and gyroscope) at 50 Hz. The
sampling frequency was chosen to satisfy the Nyquist criterion.
For estimation of the Nyquist frequency, the power spectrum of
the sampled signals was examined. From the power spectrum
graphs, the highest frequency of the signal was 8.5 Hz, which
means that a sampling frequency of 17 Hz would suffice to meet
the Nyquist frequency.

The sampled data were sent wirelessly to a base station using
a time-division multiple-access (TDMA) protocol. The base
station was connected to a laptop via USB to deliver received
data to our data collector tool.

For data collection, each mote was programmed to transmit
data in packets of size 41 B, containing two consecutive samples
of accelerometer and gyroscope readings. Given the 250 kb/s
bandwidth available on TelosB motes [15], the base station can
theoretically support up to 31 sensor nodes at 50 Hz.

The communication system for data collection did not use a
retransmission mechanism for lost packets. However, a MAT-
LAB tool was developed to estimate missing samples using lin-
ear interpolation. Throughout collecting data of different nodes,
subjects, movements, and trials, the packet lost never exceeded
20%.

B. Data Processing

For each movement, 50% of the trials were used to generate
the training model, and the rest were used to verify the action
recognition technique. For each trial, the raw sensor readings
were passed through a five-point moving average filter to re-
duce high-frequency noise. The filtered data were reported at
the middle of the window. The five-point moving average fil-
ter is a low-pass filter with a cutoff frequency of 2.4 Hz. The
cutoff frequency was obtained by conducting a discrete Fourier
transform analysis in MATLAB. Given the 50 Hz sampling
frequency, the Periodogram analysis was used to estimate the
power spectral density (PSD) of the signal. The cutoff frequency
was determined as the frequency corresponding to 3 db below
the first peak in the plot of the signal PSD.

The choice of the window size for the moving average filter
relies on two objectives, which are as follows.

1) The cutoff frequency needs to be low enough to effectively
bypass unnecessary motions such as tremors that occur at
higher frequencies than usually movements.

2) The cutoff frequency must be high enough to maintain
significant data. With these objectives, different filters
with varying window sizes ranging from 3 to 13 were
examined.

432 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 14, NO. 2, MARCH 2010

Fig. 3. Transcript for a trial of “jump” generated by the right-wrist node.

The cutoff frequencies ranged from 4.3 for three-point filter
to 1.1 for 13-point filter. The three-point filter was pruned out
because it had a cutoff frequency of 4.3 Hz, which is within
the range of undesirable motions. Tremors in patients with
Parkinson’s disease occur at frequencies 4–5.3 Hz [28]. Among
the remaining filters, the filter that generated highest quality
clusters during transcript generation was chosen. Practically,
a very large window would cause the transcripts to miss key
details and too small windows would produce irrelevant and
misleading clusters. The Silhouette measure [29] reported the
highest value for the five-point moving average filter.

To capture parts of the signal that correspond to a complete
action, we used the video data that was recorded during the data
collection. Using video, we found the start and the end of each
trial and ignored nonactivity parts in subsequent processing.

The next step in our signal processing was feature extrac-
tion. The five statistical features described in Section III-B were
extracted from a moving window centered about each sample.
These features were calculated for all training trials. The fea-
tures were then used for GMM clustering that aimed to construct
primitives of the movements. Motion transcripts were generated
by individual nodes using separate alphabets. Fig. 3 illustrates
transcript of the “jump” movement generated by the node placed
on the right wrist. For visualization, only accelerometer read-
ings are shown, but both accelerometer and gyroscope readings
were used for clustering. Acceleration is measured with respect
to the gravitational acceleration g, as shown on X-axis. Each
movement is divided into several segments, each representing
a primitive. A string αL denotes L instances of primitive α
mapped to the same cluster. For example, X16 in Fig. 3 ac-
counts for the same classification for the first 16 points.

C. Classification Accuracy

As mentioned earlier, we used 50% of the trials to validate
the effectiveness of our distributed action recognition technique.
For each test trial, our local processing proceeded to generate
transcripts at each node. With the transcripts, we computed the

Fig. 4. Classification accuracy per movement for different experimental
categories.

distance between the test trial and each movement class. Based
on the resulting DV, a sensor node might decide to transmit
its local statistics, as described in Section V-B. The algorithm
could eventually output an action as the target movement. We
compared this output with the actual label obtained during the
data collection to verify the classification decision. Using 250
test trials five subjects, ten actions, and five trials each), we
achieved an overall classification accuracy 84.13%, when only
one sensor node was required on average to classify each action.
This value was obtained when the augmented rejection threshold
with b = 0 was used (see Algorithm 2). We also measured the
classification accuracy and the average number of sensor nodes
required for classification for the case of fixed threshold (see
Algorithm 1). Fig. 4 shows classification accuracy for each class
of movements. The results verify that adjusting the value of
rejection threshold based on augmented approach provides the
best results in terms of the average number of active nodes for
classification.

In summary, we performed analysis for four categories ac-
cording to the movement rejection criterion.

1) Fixed criterion, when the value of the rejection thresh-
old was fixed based on training data. The classification
accuracy was 91.33% and the average number of nodes
required to converge was 5.5 nodes. In this case, the same
accuracy as the centralized algorithm was obtained.

2) Augmented approach with b = 0, where threshold was
updated in real time, according to the number of nodes
already visited. This reached an accuracy of 84.13% and
one active node.

3) Augmented with b = 1, with this setup, we obtained 86%
accuracy and 2.6 nodes in average.

4) Augmented with b = 2, the classification accuracy for this
case was 91.2% and the average number of nodes was 5.3.
These results are summarized in Table III.

Fig. 5 shows the average number of nodes for classification
of each movement. The values are categorized based on the
rejection criterion. On average, only one node was needed for
the case of augmented threshold adjustment with b = 0.

Table IV shows the value of ε for each action based on
(12). We recall that for each particular movement, this value

GHASEMZADEH et al.: STRUCTURAL ACTION RECOGNITION IN BSNs: DISTRIBUTED CLASSIFICATION BASED ON STRING MATCHING 433

TABLE III
OVERALL CLASSIFICATION ACCURACY AND AVERAGE NUMBER OF NODES FOR DIFFERENT SETUPS

Fig. 5. Average number of active nodes for detecting each movement.

TABLE IV
VALUE OF EPSILON CALCULATED FOR EACH MOVEMENT CLASS

represents how well that movement is separated from the rest
of classes in the training data. As an example, movement 9
(reach up to cabinet) has the largest value of ε. This observa-
tion can be interpreted as follows. Movement 9 can be uniquely
identified by the node placed on the forearm (e.g., node 2), as this
is the only node that experiences distinguishable patterns when
person performs the action. During other actions, either several
body segments are expected to be involved or different motions
are introduced by the forearm. As a consequence, sensor data
obtained for this movement can provide different structural and
relational information from those obtained for the other actions.

D. Robustness

1) Subject-Independent Classification: Successful deploy-
ment of a classification model requires the results to be in-
dependent of the observations based on which the system has

been developed. In this section, we demonstrate the robustness
of this system to changes in target population. For this pur-
pose, cross-subject classification accuracy is calculated, where
the data from a test subject is not used for training. This allows
us to estimate the amount of misclassification for a new subject,
without prior training data from that subject.

Since five subjects participated in data collection, five differ-
ent tests were conducted, each measuring classification accuracy
for one subject not being used for training. The test subject was
not used for building the training model, including calculation
of the GMM parameters and forming training data for k-NN
classification. Classification accuracy ranged between 75% for
subject 5 (i.e., S2) to 88% for subject 2 (i.e., S2). Subjects S1 , S3 ,
and S4 obtained 80%, 83%, and 83% accuracy, respectively. As
mentioned previously, the S5 had the lowest accuracy among
all other subjects. Major source of misclassifications for this
subject seemed to be “turning” action (40% accuracy for this
movement when S5 used for test, and S1 to S4 were used for
training). This can be explained by the fact that S5 was the oldest
subject with an age of 55, and therefore, her movements have
been less similar to other subjects whose age ranged between
25 and 35.

2) Calibration: An important aspect of sensor-based mo-
tion analysis is robustness with respect to sensor displace-
ment and misorientation. The accelerometers used in our study,
LIS3LV02DQ, measure acceleration relative to the gravity.
Therefore, in static mode, the accelerometer detects the grav-
ity. This information can be used to correct misplacement and
misorientation of the nodes in order to maintain consistent mote
positioning for throughout the experiments. While this approach
helps in correcting initial node placements, more complex cali-
bration models are needed to compensate for dynamic changes
due to node misplacements during each movement trial. One
approach is to find signals/features that are insensitive to node
misplacement and use them for classification [30].

E. Algorithm Complexity

The five statistical features described in Section III-B are cal-
culated from a moving window centered about each sampled
data. As a result, the feature extraction linearly grows with the
number of samples within each action and the number of fea-
tures, thus turning the feature extraction into a linear algorithm
in the number of features and length of actions.

Once GMM clustering is developed, it is used to generate
transcripts for each action. Transcript generation for a test trial
consists of finding proper label for each data point based on max-
imum posterior probability criterion described in Section IV-A.
This process is linear in the number of training points.

434 IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, VOL. 14, NO. 2, MARCH 2010

The k-NN classification is performed based on intertranscript
edit-distance calculation. The edit-distance function is usually
implemented using dynamic programming and is quadratic in
the length of transcript.

VII. DISCUSSION AND FUTURE WORK

Currently, our sensing platform is used for data collec-
tion, and the signal processing modules are developed of-
fline in MATLAB to facilitate design process. However, our
preliminary results on algorithm development for real-time ex-
ecution demonstrate the applicability of the processing tasks for
implementation and execution on the mote [31].

The system presented in this paper does not accommodate
an automatic segmentation technique. The segmentation pro-
cess is currently done manually using video data of the ex-
periments. However, we are working on developing automatic
segmentation and annotation techniques that meet computation
constraints of the system [17]. Moreover, video data is used
only for manual segmentation during system training. There-
fore, once an automatic segmentation is employed, our system
can work independent of the video-based training.

Our work in constructing movement transcripts is ongoing.
We would like to explore the effectiveness of using transcripts
to extract numeric parameters from actions. Examples of this
include grading swings in sports and determining pathological
qualities of gait. Furthermore, we are planning to determine the
performance bounds on our distributed algorithms.

VIII. CONCLUSION

We presented a dynamic distributed model of movement clas-
sification in BSNs. The system relies on motion transcripts that
are built using mobile wearable inertial sensors. Motion tran-
scripts were chosen because their use significantly decreases
the cost of communication in the network. Additionally, we
proposed a distributed approach, where individual nodes trans-
mit their local results using a timer based on the likelihood of
local results being eliminated by the pruning. When all but one
action is eliminated, the algorithm stops. The dynamic nature
of the algorithm decreases the number of active nodes required
to make a classification decision, thus contributing to further
reducing power consumption in the network. Our results show
the effectiveness of this approach, both for reliable movement
classification and reduction of communication.

REFERENCES

[1] L. Hyman, Phonology: Theory and Analysis. Boston, MA: Heinle &
Heinle Publishers, 1975.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Comput. Netw., vol. 38, no. 4, pp. 393–422,
2002.

[3] R. Musaloiu and A. Terzis, “Minimising the effect of wifi interference
in 802.15.4 wireless sensor networks,” Int. J. Sens. Netw., vol. 3, no. 1,
pp. 43–54, 2007.

[4] P. Zappi, C. Lombriser, T. Stiefmeier, E. Farella, D. Roggen, L. Benini,
and G. Troster, “Activity recognition from on-body sensors: Accuracy-
power trade off by dynamic sensor selection,” Lecture Notes Comput.
Sci., vol. 4913, pp. 17–33, 2008.

[5] H. Ghasemzadeh, E. Guenterberg, and R. Jafari, “Energy-efficient
information-driven coverage for physical movement monitoring in body
sensor networks,” IEEE J. Sel. Areas Commun., vol. 27, no. 1, pp. 58–69,
Jan. 2009.

[6] S. Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T. Park, and J. Song,
“Seemon: Scalable and energy-efficient context monitoring framework
for sensor-rich mobile environments,” in Proc. 6th Int. Conf. Mobile Syst.,
Appl., Serv. (MobiSys), New York: ACM, 2008, pp. 267–280.

[7] P. Veltink, L. Martens, and R. V. Lummel, “Detection of static and dynamic
activities using uniaxial accelerometers,” IEEE Trans. Rehabil. Eng.,
vol. 4, no. 4, pp. 375–385, Dec. 1996.

[8] G. Guerra-Filho, C. Fermüller, and Y. Aloimonos, “Discovering a lan-
guage for human activity,” in FS’05: Proc. AAAI 2005 Fall Symp. Antici-
patory Cogn. Embodied Syst., pp. 70–77.

[9] G. Guimarães and L. Pereira, “Inferring definite-clause grammars to ex-
press multivariate time series,” in Proc. 18th Int. Conf. Innov. Appl. Artif.
Intell., New York: Springer-Verlag, 2005, pp. 332–341.

[10] Z. Husz, A. Wallace, and P. Green, “Human activity recognition with
action primitives,” in Proc. IEEE Conf. Adv. Video Signal Based Surveill.
(AVSS 2007), Sep., pp. 330–335.

[11] O. C. Jenkins and M. J. Mataric, “Automated derivation of behavior vo-
cabularies for autonomous humanoid motion,” in Proc. 2nd Int. Joint
Conf. Auton. Agents Multiagent Syst. (AAMAS 2003), New York: ACM,
pp. 225–232.

[12] N. Niwase, J. Yamagishi, and T. Kobayashi, “Human walking motion
synthesis with desired pace and stride length based on hsmm,” IEICE—
Trans. Inf. Syst., vol. E88-D, no. 11, pp. 2492–2499, 2005.

[13] P. Fihl, M. Holte, T. Moeslund, and L. Reng, “Action recognition using
motion primitives and probabilistic edit distance,” Lecture Notes Comput.
Sci., vol. 4069, pp. 375–384, 2006.

[14] T. Stiefmeier, D. Roggen, and G. Tröster, “Gestures are strings: Efficient
online gesture spotting and classification using string matching,” in Proc.
ICST 2nd Int. Conf. Body Area Netw. (BodyNets 2007), ICST, Brussels,
Belgium, pp. 1–8.

[15] J. Polastre, R. Szewczyk, and D. Culler, “Telos: Enabling ultra-low power
wireless research,” in Proc. 4th Int. Symp. Inf. Process. Sens. Netw. (IPSN
2005), Apr., pp. 364–369.

[16] N. Stergiou, Innovative Analyses of Human Movement: Analytical Tools
for Human Movement Research. Champaign, IL: Human Kinetics,
2003.

[17] E. Guenterberg, H. Ghasemzadeh, V. Loseu, and R. Jafari, “Distributed
continuous action recognition using a hidden markov model in body sen-
sor networks,” in Proc. 5th IEEE Int. Conf. Distrib. Comput. Sens. Syst.
(DCOSS), Berlin/Heidelberg, Germany: Springer-Verlag, 2009, pp. 145–
158.

[18] H. Ghasemzadeh, E. Guenterberg, S. Ostadabbas, and R. Jafari, “A motion
sequence fusion technique based on PCA for activity analysis in body
sensor networks,” presented at the 31st Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc., Minneapolis, MN, 2009.

[19] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New
York: Wiley Interscience Publication, 2000.

[20] J. B. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proc. 5th Berkeley Symp. Math. Stat. Probability,
L. M. L. Cam and J. Neyman, Eds., vol. 1. Berkeley, CA: Univ. California
Press, 1967, pp. 281–297.

[21] S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika, vol. 32,
no. 3, pp. 241–254, Sep. 1967.

[22] M. Figueiredo and A. Jain, “Unsupervised learning of finite mixture mod-
els,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 3, pp. 381–396,
Mar. 2002.

[23] C. Fraley and A. Raftery, “How many clusters? Which clustering method?
Answers via model-based cluster analysis,” Comput. J., vol. 41, no. 8,
pp. 578–588, 1998.

[24] G. J. McLachlan and T. Krishnan, The EM Algorithm and Extensions, 2nd
ed. New York: Wiley, 2008.

[25] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE
Trans. Inf. Theory, vol. IT-13, no. 1, pp. 21–27, Jan. 1967.

[26] V. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Phys. Doklady, vol. 10, no. 8, pp. 707–710,
1966.

[27] J. Afalg, H.-P. Kriegel, A. Pryakhin, and M. Schubert, “Multi-represented
classification based on confidence estimation,” in Advances in Knowl-
edge Discovery and Data Mining (Lecture Notes in Computer Science).
vol. 4426, Berlin/Heidelberg, Germany: Springer-Verlag, 2007, pp. 23–
34.

GHASEMZADEH et al.: STRUCTURAL ACTION RECOGNITION IN BSNs: DISTRIBUTED CLASSIFICATION BASED ON STRING MATCHING 435

[28] L. J. Findley, M. A. Gresty, and G. M. Halmagyi, “Tremor, the cogwheel
phenomenon and clonus in Parkinson’s disease,” J. Neurol. Neurosurg.
Psychiatry, vol. 44, no. 6, pp. 534–546, 1981.

[29] P. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” J. Comput. Appl. Math., vol. 20, no. 1,
pp. 53–65, 1987.

[30] H. Harms, O. Amft, and G. Tröster, “Modeling and simulation of sensor
orientation errors in garments,” in Proc. 4th Int. Conf. Body Area Netw.
(Bodynets 2009), New York: ACM.

[31] H. Ghasemzadeh, N. Jain, M. Sgroi, and R. Jafari, “Communication min-
imization for in-network processing in body sensor networks: A buffer
assignment technique,” in Proc. IEEE/ACM Design Autom. Test Eur.
(DATE), 2009, pp. 1–6.

Hassan Ghasemzadeh (S’07) received the B.Sc. de-
gree in computer engineering from Sharif Univer-
sity of Technology, Tehran, Iran, in 1998, and the
M.Sc. degree in computer engineering from the Uni-
versity of Tehran, Tehran, in 2001. Since 2007, he has
been working toward the Ph.D. degree in computer
engineering from the University of Texas at Dallas,
Richardson.

His current research interests include embedded
systems, collaborative signal processing, reconfig-
urable computing, and algorithm design for medical

embedded systems.

Vitali Loseu (S’07) received the B.S. and M.S.
degrees, in 2007 and 2008, respectively, in com-
puter science from the University of Texas at Dallas,
Richardson, from where he is currently working
toward the Ph.D. degree in computer engineering
in the Embedded Systems and Signal Processing
Laboratory.

His research interests include system optimization
for reconfigurable computing.

Roozbeh Jafari (M’06) received the B.Sc. degree
in electrical engineering from Sharif University of
Technology, Tehran, Iran, in 2000, the M.S. degree in
electrical engineering from The State University of
New York, Buffalo, in 2002, and the M.S. and Ph.D.
degrees in computer science from the University of
California (UC), Los Angeles, in 2004 and 2006,
respectively.

During 2006–2007, he was a Postdoctoral Re-
searcher with the Department of Electrical Engineer-
ing and Computer Science, UC, Berkeley. He is cur-

rently an Assistant Professor of electrical engineering with the University of
Texas at Dallas, Richardson. His research interest include the area of networked
embedded system design and reconfigurable computing with emphasis on med-
ical/biological applications, their signal processing, and algorithm design. He is
the Director of Embedded Systems and Signal Processing Laboratory.

