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Abstract

Monitoring human activities using wearable
wireless sensor nodes has the potential to enable
many useful applications for everyday situations. The
deployment of a compact and computationally
efficient grammatical representation of actions
reduces the complexities involved in the detection
and recognition of human behaviors in a distributed
system. In this paper, we introduce a road map to a
linguistic framework for the symbolic representation
of inertial information for physical movement
monitoring. Our method for creating phonetic
descriptions conmsists of constructing primitives
across the network and assigning certain primitives
to each movement. Our technique exploits the notion
of a decision tree to identify atomic actions
corresponding to every given movement. We pose an
optimization problem for the fast identification of
primitives. We then prove that this problem is NP-
Complete and provide a fast greedy algorithm to
approximate the solution. Finally, we demonstrate
the effectiveness of our phonetic model on data
collected from three subjects.

1. Introduction

Wireless sensor networks are emerging as a
promising platform for a large number of application
domains. Applications range from monitoring
systems such as environmental and medical
monitoring to detection and supervision applications
such as acoustic beamforming and military
surveillance. In most applications, a sensor node is
expected to acquire physical measurements, perform
local processing and storage, and communicate
within a short distance. Employing sensor networks
to understand human actions is expected to be of use
in numerous aspects of everyday life. In particular,
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sensor networks can be effective for rehabilitation,
sports medicine, geriatric care, and gait analysis.

Human motion recognition using wireless sensor
networks can be done with either off-body or on-
body sensor devices. The fields of computer vision
and surveillance have traditionally used cameras, off-
body devices, to monitor human movement [1].
Processing image sequences to recognize motions is
the foundation of this approach. Cameras are used in
tracking-based systems to detect actions performed
by subjects inside an area. The use of video streams
in wireless networks to interpret human motion has
been considered for assisted living applications [2-4].
Body sensor networks (BSNs), in contrast, are built
of lightweight sensor platforms, which are used to
recognize the actions performed by the person
wearing them [5]. The sensors can be mounted on the
human body or clothing or even woven into the
fabric of the clothing itself. Unlike vision-based
platforms, BSNs require no environmental
infrastructures. They are also less expensive.
Moreover, the signal readings from on-body sensors
are clearer and unbiased by environmental effects
like light and the background. This makes BSNs
potentially more accurate than vision frameworks for
motion recognition.

We address the problem of movement
representation in BSNs. Current methodologies in
BSNs map all sensor readings to an identical feature
space and then use traditional pattern recognition
techniques to detect movement [6, 7]. A more
efficient form of representation is a linguistic
framework. Motivation for such an approach comes
from the fact that movement and spoken language
use a similar cognitive substrate in terms of
grammatical hierarchy [8]. To construct a language
for movement, the first step is to find the basic
primitives, called phonemes, and assign appropriate
symbols to them. This step, called phonology, creates
the foundation for following steps. The second step,



morphology, consists of combining primitives to
form higher-level movements. These are called the
morphemes of motion language. The last step is
syntax. It addresses the construction of sentences
composed of morphemes using predefined rules and
enables the most meaningful level of movement
recognition [9].

In general, modeling human movements as a
language gives a compact representation of activities.
Therefore, a linguistic model would be especially
useful in BSNs, which have limited communication
and computation capabilities but must collect and
process data from several sensor nodes to recognize
movements. The linguistic model also enables the
extraction of temporal characteristics of motion.
However, before one can apply a linguistic approach
to movement recognition, signals must be segmented
into different movements and labeled. If the signal is
segmented in a less meaningful way, such as by
using a fixed-size window, movements cannot be
decomposed into primitives, and low-level actions
cannot be combined to form higher-level actions.

In this paper, we investigate a compact and
flexible representation for atomic movements using a
BSN platform. We provide phonological rules for
constructing primitives associated with each
movement. We also provide insights into the
detection of movements using primitives. In our
framework, each action is described by a set of
primitives in which each primitive is associated with
a different node.

2. Related Work

Understanding human activity has attracted many
researchers in different fields of study. In the
computer vision community, both static and dynamic
vision-based approaches have been developed. In
static methods, individual time frames of a video
sequence are used as the basic components for
analysis. Recognition then involves the combination
of discrete information resulting from individual
frames. In dynamic methods, a fixed length of a
video stream is the major unit of analysis. The
Hidden Markov Model (HMM) [10], which takes
into account the correlation between adjacent time
instances by formulating a Markov process [11], is
often used for the dynamic representation of motion
due to its ability to handle uncertainty in its
stochastic framework. Examples include the work
presented in [12], which introduces a statistical
technique for synthesizing walking patterns. The
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motion is expressed by a sequence of primitives
extracted using a model based on HMM.

The limitation of HMM in efficiently handling
several independent processes has led to the creation
of grammar-based representations of human actions.
In [8], Guerra-Filho et al. propose a platform for a
visuo-motor language. They provide the basic kernel
for the symbolic manipulation of visual and motor
information in a sensory-motor system. The
phonology, morphology, and syntax of obtained
information are detailed. Their phonological rules are
modeled by a finite automaton. For syntax, they
present a model for sentence construction in which
active joints, posture, human activity, and timing
coordination among different joints form the basic
components of language. These components
correspond respectively to noun, adjective, verb and
adverb in a natural language. Reng et al. [13] present
an algorithm to find primitives for human gestures
using electromagnetic sensors. The motion capture
system measures the 3D position of body parts. The
trajectory of motion is considered a gesture, and
primitives are constructed based on the density of the
training data set. In [14], Jin et al. propose a
technique to reduce the semantic gap between raw
3D motion and actual human behavior. The process
begins with spatial dimension reduction and then
maps the new temporally distributed feature space
into the space of motion primitives. They construct
motion documentation for 3D human motion clips
that can then be used for motion recognition using
string matching algorithms. In [15], Abhijit et al.
present a probabilistic context-free grammar (PCFG)
[16] for action recognition. They create the grammar
using a multi-view video sequence, and the resulting
grammar is independent of the video perspective.
Each action is described by a short sentence of basic
key poses, and each pose is represented by a family
of images observed from different viewpoints. The
system has the ability to extract key poses and
actions from multi-camera, multi-person training data
and construct a probabilistic grammar. The grammar
is used to parse a single-viewpoint video to explore
the sequence of actions within the video. More
content-based 3D motion detection techniques can be
found in [17], [18], [19], and [20].

Recently, human motion recognition using sensor
networks has been the center of much work.
Lymberopoulous et al. [21] introduce a general
linguistic framework for the construction of
hierarchical probabilistic context-free grammars in
sensor networks. The system uses a series of
locations in time from sensor nodes equipped with
cameras. At the lowest level, sensor readings are



converted to a set of symbols that become the inputs
of higher-level grammars. Each level of the system
reduces the data that needs to be propagated to the
higher layers. Therefore, the transition from lower
levels to higher levels represents more macroscopic
activities. An application of this platform is presented
in [22], where the detection of cooking activity is
obtained by parsing actions through a hierarchy of
grammar. This hierarchical approach to human
motion representation and recognition is also the
foundation of work presented in [2], in which the
potentials for extending the platform to an assisted-
living environment are discussed. Barnes et al. report
that BSNs are a promising platform for locomotion
monitoring [23]. In [24], Logan et al. report the
results of a study on activity recognition using
different types of sensory devices, including built-in
wired sensors, RFID tags, and wireless motion
sensors. The analysis performed on 104 hours of data
collected from more that 900 sensor inputs shows
that motion sensors outperform the other sensors on
many of the movements studied. A system called
CareNet for physical activity monitoring using a
wireless sensor network is presented by Jiang et al. in
[25]. Commercial systems for activity recognition at
home, such as [26] and [27], are available, but they
work only with certain movements. In [28], Marin-
Perianu et al. introduce a correlation algorithm for
dynamically grouping sensor nodes equipped with
motion sensors. Nodes are considered to be in the
same group if their movements correlate for a certain
amount of time.

Although the aforementioned linguistic methods
have been successful in providing a grammatical
platform for action recognition, they could not be
efficiently employed in systems based on BSNs. The
main reason for this incompatibility is that they use
visual movements captured by cameras, whereas
BSNs use inertial sensors to capture motion. The
primitives constructed based on visual data are not
appropriate for inertial data.

3. System Architecture and Signal
Processing Flow

For our pilot application, we use a BSN consisting
of several sensor units in a wireless network. Each
node, which is also called a mote, has a triaxial
accelerometer, a biaxial gyroscope, a microcontroller,
and a radio, as shown in Figure 1. The processing
unit of each node samples sensor readings at 22 Hz
and transmits the data wirelessly to a base station
using a TDMA protocol. The sampling rate is
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experimentally chosen to provide sufficient
resolution of human motion data while compensating
for bandwidth constraints on our sensor platform.
Our motes, Tmote Sky motes, are commercially
available from moteiv® and are powered by two AA
batteries each. The sensor board is custom designed.
The base station is another mote connected to a
laptop by USB. For our experiments, we arranged 18
sensor nodes on the subjects, as shown in Figure 2.
We have used 18 nodes to ensure that the system
captures inertial information associated with all
major parts of the body and to study which locations
are most useful. Fewer nodes are sufficient to
accurately recognize motion, as the results of this
paper will show.

Figure 2. Experimental subject wearing sensor nodes.

The signal processing, phoneme construction, and
identification process has six steps, as shown in
Figure 3.

1. Sensor Data Collection: Data is collected from
each of the five sensors on each of the 18 sensor
nodes at 22 Hz.

2. Preprocessing: The data is filtered to enable
easier processing. We use an eight-point moving
average.

3. Segmentation: We determine the part of the
signal that represents an action. Currently we
perform this process manually to avoid injecting
errors from automatic segmentation into our process.

4. Feature Extraction: Single-value features are
extracted from the filtered data. Features include
mean, start-to-end amplitude, standard deviation,
peak-to-peak amplitude, and RMS power.
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5. Primitive Construction and Symbolization: This
is the main focus of this paper. In this stage, we use a
phonological approach to construct primitives for
each sensor node and present human action in terms
of meaningful phonemes.

6. Per-Node Identification: Each node uses a
phonetic expression of movements to map a given
action to the corresponding primitive. In this way,
each node offers local knowledge of the current event
in the system.

7. Global Identification: The global state of the
system is recognized by combining local knowledge
from different nodes.

Currently, we process collected data offline in
MATLAB. This is convenient for rapid prototyping
and algorithm development. However, the algorithms
we use for signal processing and movement
recognition are developed from relatively simple
techniques that can be implemented and executed on
the motes.

4. Preliminaries

In this section, we first investigate properties of
motion recognition using our system. We then
discuss the need for clustering techniques in our
system. We look into the most popular clustering
algorithms and the mechanisms for evaluation of
clusters. Finally, we apply clustering to the problem
of primitive construction.

4.1. Recognition Objectives

While detection of movements requires a global
view of the whole system, each individual node in a
BSN has only local knowledge of the event taking
place. This makes the problem of training and
recognition very challenging [21]. The amount of
knowledge provided by each node determines the
usefulness of that node in recognizing movements.

Figure 3. Signal processing flow.

61

We believe the right place to begin a discussion on
phoneme construction for our system is to consider
the properties of movements and the relationship
between each movement and the system
configuration. To achieve a generalized view of these
properties, we use a per-node study; i.e., we do not
make any assumptions about network topology or
applications to avoid ad hoc methods. We
summarize the properties of our system below.

4.1.1. Location independence: Our study is focused
on using inertial sensors to measure attributes of
human motions. Therefore, we do not embed any
context data within the system. In particular, the
training and recognition of movements is
independent of the location where the action takes
place. However, contextual information such as
location may help to improve the accuracy of
detection at a later stage. Context awareness can be
implemented on top of the proposed system.

4.1.2. Distributed recognition: Each node in the
system has a different perspective on the movement.
The ability of a node to recognize movements varies
based on the type of movement. For example,
consider the two movements “stand to sit” and
“bending”. A node mounted on the arm might
contribute to distinguishing these two movements,
but a sensor on the ankle might not provide useful
information. The main advantage of unsupervised
classification in our system is that by clustering
training sets at each node, nodes not contributing to a
certain movement will be recognized. That is, we will
be able to determine which nodes are useful for
recognizing which movements.

4.1.3. Recognition invariance: The detection of a
movement should be invariant with respect to the
target population. This includes invariance to age,
gender, strength, and physical capabilities. At this



stage of our study, we have not investigated this
property as investigating it will require data from a
large and diverse set of subjects.

4.2. Clustering Implications

We employ clustering to find primitives for each
movement. In this section, we explain how we
benefit from clustering algorithms and strategies of
finding the most effective clustering configuration.

4.2.1. Clustering Techniques. Clustering is
grouping together those data points in a training set
that are most similar to each other. Two major
clustering techniques are hierarchical clustering [29]
and K-means clustering [30]. In the hierarchical
method, each data item is initially considered a single
cluster. At each stage of the algorithm, similar
clusters are grouped together to form new clusters. In
the K-means algorithm, the idea is to define K
centroids, one for each cluster. In this way, training
data are grouped into a predefined number of clusters

Unlike hierarchical clustering, in which clusters
are not improved after being created, the K-means
algorithm visits constructed clusters at each iteration
and improves them gradually. The continuously
improving nature of this algorithm leads to high-
quality clusters when provided appropriate data. We
use this algorithm for our analysis because it is
simple, straightforward, and is based on the firm
foundation of analysis of variances [31].

4.2.2. Cluster Validation. Although K-means is a
popular clustering technique, the partition attained by
this algorithm is dependent on both the initial value
of centroids and the number of clusters. To increase
the likelihood of arriving at a good partitioning of the
data, many improvements to K-means have been
proposed in the literature. The sum of square error
(SSE) is a reasonable metric used to find the global
optimal solution [32]. To cope with the effects of
initialization, we use uniformly distributed initial
centers [33] and repeatedly search for the
configuration that gives the minimum error. We
calculate the SSE error function as in (1), where x;

denotes the i” data item, u ¢ denotes the centroid

vector associated with cluster C;, and X is the total
number of clusters.

K
SSE=3 2 (5 = #)’ (1)
k=1 ieCy
Another problem with K-means is that it requires
prediction of the correct number of clusters. Usually,
a cluster-validity framework provides insight into
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this problem. We employ the silhouette quality
measure [34], which is robust and takes into account
both intra-cluster and inter-cluster similarities to

determine the quality of a cluster. Let ¢, be a cluster

constructed based on the K-means algorithm. The

silhouette measure assigns a quality metric S; to the

i" data item of Cy- This value indicates the

confidence of the membership of the i item to

cluster C,. S; is defined by (2), where q; is the
average distance between the i data item and all of
the items inside cluster C;, and b; is the minimum of

the average distances between the i item and all of
the items in each cluster besidesc,. That is, the

silhouette measure compares the distance between an
item and the other items in its assigned cluster to the
distance between that item and the items in the
nearest neighboring cluster. The larger the S;, the
higher the level of confidence about the membership

of the i sample in the training set to cluster C,, .
b; —ay;
" max{a;,b;} (2)
While S;, also called silhouette width, describes
the quality of the membership of a single data item,
the quality measure of a partition, called the
silhouette index, for a given number of clusters X is

calculated using (3), where N is the number of data
items in the training set.

1 N
Sil(K)=—_S; 3)
N i=1

To obtain the most effective configuration in
terms of the number of clusters, one can choose the K
that has the largest silhouette index, as shown in (4).

K = arg max {Sil(K)} 4)
K

4.3. Phonology

Physical movement monitoring involves mapping
a series of behaviors onto a vocabulary of actions.
The vocabulary represents movements performed
previously and stored as training sets across nodes.
This vocabulary consists of words, each composed of
segments named phonemes or primitives. The initial
step in a linguistic framework for action recognition
is phonology, which is the process of finding basic
primitives for human movement. In our networked
framework, primitives are distributed among sensor
nodes with varying ability to recognize movements.
Our phonetic description is able to characterize each



action in terms of primitives using a two-stage
process that we will describe next.

4.3.1. Primitive Construction. The first step in
constructing our phonetic description is to find local
primitives at each node. To do this, we use K-means
clustering to perform local clustering at each node,
transforming the feature space into groups of dense
data items. Each cluster corresponds to an original
primitive in our model. This technique is effective
since it provides insights into the usefulness of nodes
in detecting each movement. Actions with similar
patterns at a certain node tend to be assigned to the
same cluster at that node, while they might be
represented by different clusters at another node.
Suppose sensor readings are mapped to m different
actions {A4;, A4, ..., Amm} on some node i by
segmentation. The clustering algorithm  will
transform these actions into a series of clusters {P;,,
P, ..., Pi.}, where ¢ < m represents the number of
clusters. We employ the validation techniques
explained in Section 4.2.2 to find the most effective
clustering configuration.

4.3.2. Symbolization. The second step in
constructing our phonetic description is to select a
final group of primitives and assign symbols to them.
Some of the clusters defining our initial primitives
are of low quality, meaning the primitives they define
will not be good representations of our movements.
We refine our clusters by calculating the silhouette
quality measure for each cluster and eliminating
clusters that do not meet a certain threshold. In this
way, the set of primitives at node i might be reduced
to {Pi, Py, ..., Py}, where k < ¢ is the number of
final primitives after applying the quality measure
and ¢ is the number of original primitives. After
cluster refinement, each movement is represented by
a set of final primitives at each node.

5. Movement Identification Problem

Physical movement monitoring by sensor
networks requires the combination of local
knowledge to achieve a global view of human
behaviors. In this section we study the problem of
action recognition using the semantic subspace
generated by primitives. We pose this problem from
a general detection perspective. That is, we do not
make any assumptions about the communication
model and signal processing techniques used for
classification. Compared to a traditional classification
approach, our movement recognition algorithm is
faster and requires less communication and power.
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We use the notations in Table 1 throughout this
section.

5.1. Decision Tree Representation

The problem of recognizing movements using
primitives can be viewed as a decision tree problem
in which internal decision nodes represent different
sensor nodes, and terminal leaves correspond to
movements. The input to the tree is a vector
A=[4,...,4,], where 1 is the primitive from node i

that describes the movement to be identified, and » is
the number of nodes in the system. The aim of
motion recognition is to assign A4 to one of m
mutually exclusive actions. The ordering of nodes in
the tree changes its height and thus the time needed
to converge to a solution. We seek a linear ordering
of the nodes that minimizes convergence time. A
solution to this problem could potentially provide
insights into several crucial problems, including
decision tree construction, distributed classification,
and scheduling.

Table 1. Notations

Description
set of all actions to be detected
set of primitives extracted across the network
set of sensor nodes
number of actions
number of final primitives
number of sensor nodes
index for an action
index for a primitive
index for a node

Symbol

~~ 3T Xuvx

To better illustrate the identification problem, we
provide a simple example, shown in Figure 4, which
depicts the mapping of actions to primitives. The
system consists of three sensor nodes denoted by s,,
s,, and s3, and four movements denoted by 4, B, C,
and D. The circles depict the mapping of movements
to primitives rather than the actual distribution of
data. The system has seven final primitives denoted
by {P, P, .., P;}. In node s;, movement A is
mapped to primitive P;, movements B and C are
mapped to primitive P,, and movement D is mapped
to primitive P;. In other nodes, the movements are
mapped to primitives as shown. This phonetic
expression can effectively describe the ability of
individual nodes to identify the movements. For
instance, node s; can distinguish movement 4 from
the rest of the movements, as it finds no ambiguity
when mapping an action to P, but it cannot
distinguish between movements B and C, as they are
mapped to the same primitive. While each node has
limited knowledge of the system, we require a global



view in which every movement is distinguished from
the rest. Furthermore, we require an ordering of
sensor nodes that minimizes the total time of
convergence.

s1 s2 s3

Pl ® P4 ® PB®©

P2l B (© P5
P3| (©

Figure 4. An example of three nodes (s, 52, ;) and four
movements (4, B, C, D). The movements are mapped to seven
primitives (Pj, ..., P;). Each movement is symbolized by
corresponding primitives; A={P;,Py,Pg}; B={P;,P,,Ps};
C={P;,Ps5,Ps}; D={P3,Ps,P7}.

©e im0

Given an instance of a decision problem, one can
construct different decision trees. Figure 5 illustrates
a sample decision tree for the example represented in
Figure 4. The problem of finding a minimal decision
tree is shown to be hard to approximate [35].
Therefore, in this paper, we investigate a static
design decision for constructing a decision tree for
motion recognition. That is, we try to make an offline
decision about the optimal ordering of the sensor
nodes for recognition. Our current method of linearly
ordering the nodes restricts the shape of the decision
tree so that all nodes are placed on a single path from
the root and the tree has a height equal to the total
number of nodes required for recognition. We will
investigate the construction of a full decision tree in
future.

Figure 5. A sample decision tree for the example illustrated in
Figure 4.

5.2. Problem Formulation

In this section, we present a formal definition of
our movement identification problem.

Definition (Local Discrimination Set): Let A={4,,
A ..., An} be a finite set of movements mapped to a
set of primitives P={P,, P, ..., P,}. The local
discrimination set LDS; for a node s; is defined by:
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LDSi ={(AksAk')|Ak EI)j N Ak’ EP]., .
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The LDS; expresses the pairs of actions that can be
distinguished by the i” node. In the example shown
in Figure 4, the set of movements is {4, B, C, D},
and the set of primitives is {P;, P, .., P;}.
Therefore, the local discrimination set for node s; is
LDS;={(4,B), (4,C), (4,D), (B,D), (C,D)}. For the
other nodes, we have LDS,={(4,C), (4,D), (B,C),
(B,D)} and LDS;={(4,D), (B,D), (C,D)}.

Definition (Global Discrimination Set): Let 4={4,,
Aj, ..., An} be a finite set of actions and P={P,, P,,
..., Pp} a collection of primitives. The global
discrimination set GDS is defined by:

GDS = {(A,, Ay )| A, € 4; A, € 4; k%KY (6)

The global discrimination set contains all the pairs
of movements that are required to be distinguished
from one another. For example, the global
discrimination set for the system shown in Figure 4 is
GDS={(4,B), (4,C), (4,D), (B,C), (B,D), (C,D)}. In
this example, the objective is to distinguish between
every pair of movements.

Definition (Complete Ordering): Let A={4,, 4, ...,
An} be afinite set of actions and P={P,, P, ..., P,} a
collection of primitives. An ordering O={s,, s, ...,
sn} is complete if the following condition holds.
ﬁl LDS; =GDS %)
1=

This indicates that the ordering is capable of
distinguishing between all required pairs of
movements. In the previous example, the ordering

O={s,, 52} is complete since LDS; ULDS, = GDS, but

the ordering O={s,, s3} is not complete because this
ordering cannot discriminate between movements A4
and B.

Definition (Ordering Cost): Let O={s,, s, ..., s,} be
a complete ordering of sensor nodes and flA,) a
function that gives the index of the first node in
which the following condition holds:

)
(A, 4 ) kK, A, c4}c URZY ®)
=

That is, fA) is the number of nodes necessary to
distinguish movement 4, from all other movements.
Then the total cost of the ordering is given by the
following equation:

Z= 2 /(4) ©)

A.ed



This formulation weights the cost of an ordering
so that an ordering in which more movements require
fewer nodes has a lower cost. For example, let O={s;,
s, 81} be a complete ordering for the example shown
in Figure 4. Then f{D)=1 because movement D can
be completely identified at the first visited node (s3).
At the next node (s;), movement C can be
distinguished from the remaining movements (4 and
B). Thus, flC)=2 because movement C is identified at
the second node. Finally, movements 4 and B will be
detected at the third visited node (s;) meaning that
AA)=AB)=3. Therefore, the total cost for this
ordering is 9.

Definition (Min Cost Identification Problem):
Given a finite set GDS and LDS, where LDS={LDS,,
LDS,, ..., LDS,} is a collection of subsets of GDS
such that the union of all LDS; forms GDS, Min Cost
Identification (MCI) is the problem of finding a
complete linear ordering such that the cost of the
ordering is minimized.

In the above example, it would be easy to find the
optimal solution by a brute-force technique. We can
see that the cost for the optimal ordering ({s,, s.}) is
6.

5.3. Problem Complexity

In this section we address the complexity of Min
Cost Identification. We show that this problem is NP-
Complete by reduction from Min Sum Set Cover.
Therefore no polynomial time algorithm exists that
solves it unless P=NP.

Definition (Min Sum Set Cover): Let U be a finite
set of elements and S={S,, S,, ..., S} a collection of
subsets of U such that their union forms U. A linear
ordering of S is a bijection f from Sto {/, 2, ..., m}.
For each element ec U and linear ordering f, we
define fle) as the minimum of AS) over all
{S,:e€S,}- The goal is to find a linear ordering that

minimizes Z fle)-

Theorem 1. The Min Cost Identification problem is
NP-Complete.

Proof. We will prove that the Min Cost Identification
problem is NP-Complete by reduction from Min Sum
Set Cover (MSSC). Consider an MSSC instance
(U,S) consisting of a finite set of elements U and a
collection S of subsets of U. The objective is to find a
minimum-cost linear ordering of subsets such that the
union of the chosen subsets of U contains all
elements in U. We now define a set 7 by replacing
elements of U with all elements (4,,4,) from the
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GDS. We also define S by replacing its subsets S
with LDS;. (77,5 is an instance of the MCI problem.

Therefore, MCI is NP-hard. Since solutions for the
decision problem of MCI are verifiable in polynomial
time, it is in NP, and consequently, the MCI decision
problem is also NP-Complete.

Theorem 2. There exists no polynomial-time
approximation algorithm for MCI with an
approximation ratio less than 4.

Proof The reduction from MSSC to MCI in the
proof of Theorem 1 is approximation preserving; that
is, it implies that any lower bound for MSSC also
holds for MCI. In [36], it is shown that for every
£>0, it is NP-hard to approximate MSSC within a
ratio of 4—¢ . Therefore, 4 is also a lower bound for
the approximation ratio of MCI.

5.4. Greedy Solution

The greedy algorithm for MCI is adapted from the
greedy algorithm for MSSC and is shown in
Algorithm 1. At each step, it looks for the node that
can distinguish between the maximum number of
remaining movements. It then adds such a node to
the solution space and removes the movements it
distinguishes from further consideration. The
algorithm terminates when all pairs of movements are
distinguished from each other. The approximation
ratio is 4 as previously discussed.

Algorithm 1. Greedy solution for MCI

Inputs: 4, P, S
Output: O
1. Calculate set LDS,; for every node s;
2. Calculate set GDS
3. O=¢
4. while (0= GDS)
5. take node s; s.t. LDS; is maximum cardinality
6. 0=0us;
7. foreach (, o LDs;)
8. remove e from all LDS;for j=1,...,n
9. end for
10.  end while

Algorithm 1 can be used to find the minimum
number and preferred locations of sensor nodes
required to recognize certain movements. This can be
used for power optimization because at any time,
only a subset of sensor nodes will be required to be
active, based on the movements of interest at that
time. Furthermore, reducing the number of required
nodes helps to achieve a more wearable system,
which is a critical issue in the design of BSNs.



6. Experimental Results

To validate our proposed linguistic expression and
identification framework, we prepared an experiment
using the system described in Section 3. We had
three subjects, one male with age 32 and two females
with ages 22 and 55. We placed 18 sensor nodes on
each subject as shown in Figure 2 and stated in Table
3. The subjects performed the movements listed in
Table 2 for ten trials each. The experiment was
designed to involve a relatively wide range of
movements that required motion from different parts
of the human body. Although our experiments are
carried out in a controlled environment in which
subjects are asked to repeatedly perform specific
movements, we have the suspicion that our method
will be effective in less controlled environments
when given a larger training set that includes a wider
range of movements.

Table 2. Movements for experimental analysis.

Z
o

V0N AW —

Description
Stand to sit (armchair)
Sit to stand (armchair)
Stand to sit (dining chair)
Sit to stand (dining chair)
Sit to lie
Lie to sit
Bend and grasp from ground with right hand
Bend and grasp from ground with left hand
Bend and grasp from coffee table with right hand
10 Bend and grasp from coffee table with left hand
11 Turn clockwise 90 degrees and return
12 Tum counterclockwise 90 degrees and return
13 Look back clockwise and return to the initial position
14 Look back counterclockwise and return to the initial position
15 Kneeling, right leg first
16  Kneeling, left leg first
17 Move forward one step, right leg
18 Move forward one step, left leg
19  Reach up to a cabinet with right hand
20  Reach up to a cabinet with left hand
21 Reach up to a cabinet with both hands
22 Grasp an object with right hand, turn clockwise and release
23 Grasp an object with two hands, turn clockwise and release
24 Turn clockwise 360 degrees
25  Turn counterclockwise 360 degrees
26  Jumping
27  Going up stairs, right leg first (one stair)
28  Going down stairs, right leg first (one stair)
29  Rising from kneeling, right leg
30 Rising from kneeling, left leg

For each of the five data streams we receive from
each sensor node (x, y, z acceleration and x, y
angular velocity), we extracted the five features listed
in Section 3. We used 50% of the data as a training
set and 50% as a test set. The training set was used
for constructing primitives and finding the minimum-
cost ordering of the nodes, while the test set was used
for verifying the accuracy of our classification
technique.
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Table 3. Experiment Statistics

Node# Description HP Ordering #Actions ‘Z;‘/(Ak)

1 Waist 3 - -

2 Neck 2 5 2 40
3 Right-arm 4 - -

4 Right-elbow 3 1 0 0
5 Right-forearm 3 8 3 131
6 Right-wrist 2 9 3 158
7 Left-arm 3 - -

8 Left-elbow 3 - -

9 Left-forearm 3 30
10 Left-wrist 2 - -

11 Right-thigh 2 - -

12 Right-knee 2 - -

13 Right-shin 4 6 3 58
14 Right-ankle 3 10 3 188
15 Left-thigh 2 2 0 0
16 Left-knee 2 - -

17 Left-shin 4 7 7 107
18 Left-ankle 2 3 6 18

6.1. Static Construction of Decision Tree

As previously stated, our method constructs a
decision tree using an ordering of sensor nodes that
leads to a near-optimal solution for minimum-cost
action recognition. First, the feature space is mapped
to the initial phonemes using our primitive-
construction approach. Next, the silhouette quality
measure is applied to select high-quality primitives
from among the phonemes. The number of primitives
for each sensor node is shown in Table 3. The
number of primitives per node depends on the ability
of the node to distinguish between different
movements. A node with only one primitive could
not distinguish between any movements, whereas a
node with as many primitives as there are movements
could distinguish between all movements. Our nodes
have two to four phonemes each.

To verify the effectiveness of the greedy solution
to the Min Cost Identification problem, we used the
primitive representation of data collected from 18
nodes. Since there are 30 movements to be
recognized from our experiment, the size of the GDS
is 435, which is the total number of pairs (4,,4,) O

be distinguished.

The ordering obtained by the greedy algorithm is
given in Table 3. The ordering implies that in the
worst case, 10 sensor nodes are sufficient to achieve
a global knowledge of the current event in the
system. The most informative node is node 4, which
has the ordering 1, meaning that it should be the first
node visited for action detection. The value of the
cost function associated with this node is zero
because it alone cannot completely distinguish any
movement from all the others. In other words,
collaboration between distributed sensor nodes is
required to gain a global view of the system. The



remaining nodes that should be visited to recognize
all movements in our system are 15, 18, 9, 2, 13, 17,
5, 6, and 14, in that order.

o

s4  st5  s;e se s2 s13 sz ss  ss  su

Figure 6. Identification order of movements

The fifth column in Table 3 shows how many
movements are distinguished as nodes are visited. At
the third visited node (node 18), six movements are
identified, and at the fourth visited node (node 9),
three movements are identified. The next visited node
(node 2), supplies the information necessary to
distinguish two additional movements from the rest.
The last column in Table 3 shows the accumulated
value of the cost function f{ 4, ). The total cost of the

ordering is 188. Figure 6 shows the nodes required to
identify each movement using the ordering we
obtained. Visited nodes are listed along the x-axis,
and movements are listed along the y-axis.

6.2. Recognition Accuracy

To show the effectiveness of our motion detection
algorithm using only the active nodes reported above,
we used the linear ordering of nodes we obtained to
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