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Abstract—Advances in technology have led to the develop-
ment of various light-weight sensor devices that can be woven
into the physical environment of our daily lives. Such systems
enable on-body and mobile health-care monitoring. Our interest
particularly lies in the area of movement-monitoring platforms
that operate with inertial sensors. In this paper, we introduce
the notion of compatibility graphs and describe how they can
be utilized for power optimization. We first formulate an action
coverage problem that will consider the sensing coverage from
a collaborative signal processing perspective. Our solution is
capable of eliminating redundant sensor nodes while maintaining
the quality of service. The problem we outline can be trans-
formed into an NP-hard problem. Therefore, we propose an
ILP formulation to attain a lower bound on the solution and
a fast greedy technique. Moreover, we present a system for
dynamically activating and deactivating sensor nodes in real time.
We then use our graph representation to develop an efficient
formulation for maximum lifetime. This formulation provides
sufficient information for finding activation duties for each sensor
node. Finally, we demonstrate the effectiveness of our techniques
on data collected from several subjects.

Index Terms—Physical Movement Monitoring, Body Sensor
Networks, Power Optimization, Information Coverage, Signal
Processing, Classification.

I. INTRODUCTION

A LARGE number of patients require long-term care and
fall victim to a pervasive lifestyle of constant monitoring

in pursuit of optimal treatment. Examples of such patients
include those recovering from operations, those undergoing
rehabilitation, and the elderly. Physicians currently depend on
self-reporting to determine patients’ activity levels, including
amount of time spent walking, sleep schedules, etc. However,
recent advances in sensor and computer technology allow
patients to wear several small sensors with embedded pro-
cessors and radios. Collectively, these sensors form a body
sensor network (BSN). BSNs have the ability to diagnose
critical events such as heart attacks or heart failure and
monitor activity by recording the duration, quality and type
of movement performed. This data can be more accurate and
comprehensive than self-reporting.

An important goal in designing BSNs is to minimize power
consumption while preserving an acceptable quality of service.
Patients will be expected to charge the sensors or replace the

Manuscript received 15 January 2008; revised 28 September 2008.
H. Ghasemzadeh, E. Guenterberg and R. Jafari are with the Department of

Electrical Engineering, University of Texas at Dallas, Richardson, TX, 75080
USA (e-mail: h.ghasemzadeh@student.utdallas.edu).

Digital Object Identifier 10.1109/JSAC.2009.090107.

batteries on a regular basis, as they do with cell phones and
other electronics. However, the frequent need to charge and
the bulk of the battery can frustrate the users, causing them
to no longer wear the sensors. Furthermore, batteries are the
heaviest component in the system. By decreasing power usage,
the size and weight of each sensor node can decrease, thus
increasing patient comfort and device wearability. Deactivat-
ing unnecessary sensor nodes is a simple and highly effective
method of power reduction, but the method of determining
which nodes to deactivate depends greatly on the function of
the sensor network.

Our pilot application of physical movement monitoring can
be used for rehabilitation, sports medicine, geriatric care,
and gait analysis. Movement monitoring uses several sensor
nodes to distinguish between different types of movements,
such as walking, standing up, sitting down, lying down,
and kneeling. Typically, the sensor units are homogenous
and use accelerometers and gyroscopes to classify human
actions. Some movements, such as walking, can be easily
determined from almost any location on the body, whereas
detecting a leg-raise would specifically require a leg sensor,
and differentiating between falling, sitting down, and lying
down may require several nodes.

Current methodologies for discerning active nodes tend
to be designed for sensor coverage over a large area or
incremental diagnosis. They are either overly complicated or
inadequate when used to monitor physical movement. This
paper introduces a graph model of local knowledge provided
by each node and shows how this model can be used to
address energy requirements of our distributed system. A new
power optimization technique which we call action coverage
is presented. The objective is to select the smallest number
of sensor nodes that can adequately distinguish among all
expected activities. This selection can be altered dynamically
to disperse power load, route around a failed node, or cover
a diverse set of activities. As our experiments will show, by
limiting our interest to upper or lower-body movements, we
can reduce the number of sensors required for the set of
actions to one. To cover all body parts, at least four sensor
nodes are required. Moreover, we show the capability of the
model to maximize system lifetime while preserving the global
knowledge provided by the system.

We introduce compatibility graphs that simplify the visu-
alization of the problem and lead directly to an algorithm
for determining the minimum size set for action coverage.
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Because the problem is NP-hard, we formulate an ILP that
attempts to find a lower bound on solutions. We also provide
a quick heuristic algorithm that provides a reasonable approx-
imation. Finally, we present experimental verification of these
techniques for both coverage and lifetime problems.

II. RELATED WORK

Energy efficiency is one of the most important performance
metrics in BSNs as the system lifetime is directly affected by
the power consumed by each sensor node. Coverage, the mea-
sure of quality of service provided by a sensor node, is one of
the fundamental issues in designing wireless sensor networks.
While interpretation of the coverage problem varies subject to
the application area of the sensor network, the ultimate goal is
to develop robust algorithms for power optimization [1]. The
most studied coverage problems include geographical-based
approaches such as area coverage and point coverage. In area
coverage, the objective is to monitor a certain area in space
while maintaining quality of service. It requires an effective
technique to determine active and idle sensor nodes over time.
In point coverage, however, the objective is to monitor only a
set of points in space.

A great deal of work has been done to minimize the number
of homogeneous nodes covering a geographical area. The
authors of [2] describe a method of forming disjoint sets of
sensor nodes such that every set is capable of monitoring
the area. The area is divided into several fields, and the
field covered by the fewest nodes is referred to as critical.
The algorithm then selects the nodes that cover the critical
elements. Three approximation algorithms for the set k-cover
problem are presented in [3]. In these algorithms, the ob-
jective is to partition sensor nodes into covers such that the
number of covers that monitor the target area is maximized.
Another area coverage mechanism is presented in [4], in
which each node continuously makes decisions to activate
or deactivate itself using information from its neighbors. A
sensor becomes inactive if it discovers that its neighbors
can effectively monitor its area. The authors of [5] model
the problem as disjoint sets in an undirected graph, where
sensors correspond to vertices and an edge represents two
sensor nodes that are within close proximity. A graph-coloring
mechanism finds the minimum number of active nodes. The
authors of [6] investigate the coverage problem for target-
tracking applications. They show that by transforming the
problem into a disk-coverage problem, the number of active
sensors required for satisfactory localization would be four
times the amount for detection applications. A distributed
coverage algorithm for target-detection applications, called
Co-Grid, is presented in [7]. This technique considers the
network as several coordinating fusion groups located on
overlapping virtual grids. A probabilistic model is used to
maintain area coverage based on information derived from
minimum event detection probability and system false alarm
rate from active nodes. In [8], the authors model the coverage
problem as a decision problem to decide whether each location
in the area is adequately monitored or not. According to the
sensing range of each sensor node, which can be viewed
as a unit disk or a non-unit disk, two different decision
problems can be addressed. In another area coverage technique

presented in [9], the authors define sensing regions according
to detection constraints. Thus, the sensing regions are not
necessarily disks around nodes. The overall coverage can be
increased by forcing collaborative signal processing among
sensor nodes.

In the point coverage technique presented in [9], sensor
nodes are organized into several set covers that can be suc-
cessively activated. At each time, only one of the set covers is
considered as the active set, which further indicates the sensor
nodes that are responsible for monitoring targets and transmit-
ting data. In another point coverage algorithm introduced in
[10], the set of sensors is divided into disjoint sets such that
every set completely covers all targets. The disjoint sets are
modeled as disjoint set covers and the problem is shown to be
NP-Complete. Any polynomial-time approximation algorithm
has a lower bound of two. The authors of [11] introduce the
notion of information coverage to further reduce the number
of active nodes in the area coverage problem. The technique is
characterized based on a parameter estimation approach where
the cooperation of sensor nodes is considered. Several other
coverage techniques can be found in [12], [13], [14].

Certain distributed tracking systems employ a method of
utilizing collaborative signal processing to determine which
sensors must be initiated. An information-driven sensor collab-
oration technique proposed in [15] decides which node is most
appropriate to perform the sensing. Such tracking approaches
often attempt to estimate the future position of a target, given
its past and present positions.

The above techniques use the sensing range of each sensor
node to minimize the number of sensors completely covering
a geographical space. Such area-based approaches are not
necessarily effective for physical movement monitoring and
BSNs. In this case, complete coverage of the body is not
necessary; it is simply a reliable indication of which of the
body’s actions are important. Furthermore, the technique of
sequentially activating sensors employed in tracking systems
does not apply to physical movement monitoring systems. This
is because actions such as standing, walking, or kneeling are
relatively short and the key identifying features may occur
early in the movement. Therefore, it is essential to activate all
the required sensors before the action occurs.

While the coverage problem generally plays a great role
in reducing power consumption in wireless sensor networks,
collaborative signal processing techniques must also be used
to constrain the energy consumed due to high-volume com-
munication. This power reduction strategy involves decreasing
the communication overhead for classification. The classifier
combination itself can be performed according to several
schemes [16]. To achieve a significant data association in
a distributed system, each sensor node must associate its
local measurements with individual targets in a detection or
classification application [17]. With this technique, each sensor
node will individually perform a preliminary classification and
send the result to a central node identified as the “master”
node. The master can combine the results for a final classifi-
cation. A significant technique presented in [18] is boosting,
in which each individual classifier is re-sampled and the
majority of votes are used to combine the results. AdaBoost
[19] is another decision combiner that uses a weighted voting
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Fig. 1. A node with inertial sensors

scheme to make a global decision. It combines a set of
hypothesis through weighted majority voting on the classes
predicted by each hypotheses. Another method for classifier
combination is presented in [20] where bayesian averaging and
boosting techniques are combined to find conjunctive feature
combinations that achieve high classification accuracy. These
collaborative classifiers were designed to be executed on a
single system, and therefore do not consider communications
overhead. Authors in [21] propose a distributed classification
system for wireless sensor networks. In their system, hard
decisions made by individual nodes are communicated over
noisy links to a coordinator node which optimally combines
local results to make a final decision. A vision-based object
detection approach presented in [22] constructs a classifier by
selecting only a small number of significant features using Ad-
aBoost. It also presents a method for combining successively
complex classifiers in a cascade structure to accelerate the
detection speed. Some other distributed classification/tracking
algorithms can be studied through [23], [24].

Use of inertial sensors in BSNs is motivated by biomedical
applications, and has received much attention during recent
years. Authors in [25] introduce a framework for human
action recognition using motion sensors. They integrate on-
body sensors including accelerometers and gyroscopes in
a wireless sensor network to classify physical movements.
In [26], authors report the results of a study on activity
recognition using different types of sensory devices, including
built-in wired sensors, RFID tags, and wireless motion sensors.
Authors in [27] use a tri-axial accelerometer mounted on the
waist to recognize basic daily movements using a hierarchical
classification scheme. A pattern recognition technique for eval-
uating the performance of the human postural control system
using inertial and EMG sensors is presented in [28]. Authors
in [29] develop algorithms for recognition of daily activities
using five accelerometers placed on the human body. They
use a decision tree classifier and achieve 84% classification
accuracy. Authors in [30] integrate seven different sensor into
a single node to classify twelve movements. The accuracy
reported by their system is 90%.

Our research takes a novel approach by combining both
classification and coverage. We introduce a generic formu-
lation of coverage problem according to local knowledge
provided by different sensor nodes. We employ the results
of the classification to reduce the number of active nodes at
the decision stage. Moreover, during the classification stage,
we demonstrate an approach to further reduce the number of
nodes needed to communicate. To the best of our knowledge,

Fig. 2. Experimental subject wearing eight sensor nodes.

this issue has not been investigated previously. For this paper,
we exclusively focus on reducing the number of nodes either
in static or in real-time. Although the effectiveness of this
technique has not yet been analyzed in comparison to the
alternatives, it provides sufficient information on the capability
of our platform for distributed signal processing.

III. SYSTEM ARCHITECTURE AND SIGNAL PROCESSING

The pilot application for our research is physical move-
ment monitoring. The purpose of our system is to classify
transitional movements into pre-defined actions. Given a set
of movements, the system must distinguish between every pair
of motions. We capture inertial information of physical move-
ments using motion sensors. Our system consists of several
sensor units; each has a tri-axial accelerometer, a bi-axial gy-
roscope, a microcontroller, and a radio, as shown in Fig. 1. Our
accelerometers are LIS3LV02DQ with 1024 LSb/g sensitivity
and are used in 2g mode for the experiments. We use IDG-300
gyroscopes with 2 mV/◦/s sensitivity and 0.014 ◦/s/

√
Hz

noise performance. The processing unit of each node, or
mote, samples sensor readings at 22Hz and transmits the data
wirelessly to a base-station using a TDMA protocol. This
sampling rate is experimentally chosen to provide sufficient
resolution while compensating for bandwidth constraints of
our sensor platform. Our motes, Tmote Sky, are commercially
available from moteiv R© and are each powered by two AA
batteries. The sensor board is custom designed, and the base
station is a separate mote connected to a laptop by USB.
For our experiments, we arranged eight sensor nodes on our
subjects as shown in Fig. 2.

The signal processing and classification is a six step process
as shown in Fig. 3.

1) Sensor data collection: Data is collected from each of
the five sensors on each of the eight sensor nodes at
22Hz.

2) Preprocessing: Data is filtered with an eight-point mov-
ing average. The number of point used to average the
signal is chosen to maintain sharp step response while
a smooth output signal can be obtained.

3) Segmentation: We determine the portion of the signal
that represents a complete action. For experimental
purposes, this is done manually to avoid introducing
errors by automatic segmentation.
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Fig. 3. Signal processing flow

TABLE I
FEATURES

No. Feature Description
1 Mean Mean value over the entire segment
2 Start-to-End Difference between the start and the end points
3 Std Standard deviation
4 Peak-to-Peak Difference between the maximum and the minimum values
5 RMS Root mean square of the segment
6 Median Signal value separating the higher half of the segment
7 Max Maximum amplitude value over the entire segment

4) Feature extraction: Single-value features are extracted.
We transform sensor readings into a set of informative
attributes, including the seven features shown in Table
I.

5) Per-node classification: Each node uses the aforemen-
tioned features to determine the most likely action. We
use the k-Nearest Neighbor (k-NN) [31] classifier due
to its simplicity and scalability.

6) Final classification: The final decision can be made
using either a data fusion or a decision fusion scheme.
In the data fusion, features from all sensor nodes are
fed into a central classifier. The classifier then combines
the features to form a higher dimensional feature space
and classifies movements using the obtained features. In
the decision fusion, however, each sensor node makes a
local classification and transmits the result to a central
classifier where a final decision is made according to the
received labels. We use the data fusion scheme for our
classification where a central (k-NN) classifier makes a
final decision on the current movement occurred in the
system considering features from all senor nodes.

We currently process all our data offline in MATLAB. This
is convenient for rapid prototyping and algorithm develop-
ment. However, we have great suspicion that our algorithms
for signal processing can be implemented and executed on
the motes. In addition, we have yet to develop an approach
to automatically segment the data into actions and inactivity.
Our simple processing will be performed on the nodes once we
finished developing this automated action segmentation [32].

Fig. 4. Evolving towards a compatibility graph

IV. PRELIMINARIES

Action coverage refers to how well a system can distinguish
between various actions or events. In our system, we have a va-
riety of sensor nodes placed around the body. While detection
of all studied movements requires a global view of the system,
each individual node in the system has local knowledge of
the event taking place. The amount of knowledge presented
by each node determines the ability of the node in regards to
action recognition. An example is shown in Fig. 4. In Fig. 4a,
we show an example of two feature spaces. The ellipses
represent classification boundaries. In reality, the shapes are
not perfect ellipses. Each node in our system has five data
streams (x, y, z acceleration, and x, y angular velocity) and
seven features per data stream, forming 35 dimensions per
node.
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Regions where the ellipses overlap represent potential mis-
classifications. Any point in the intersection of A and B or B
and C cannot be confidently assigned to either class. In Fig.
4b, overlapping vs. well separated classes is translated into a
conflict graph. The vertices represent classes, and the edges
represent ambiguities between the classes. Finally, Fig. 4c, the
so-called compatibility graph, is generated by complementing
the conflict graph of Fig. 4b. If a compatibility graph is not
complete, then there exist some movements that the node
cannot correctly classify. A complete graph is equivalent to
the capability of distinguishing between every pair of classes
[33].

One of the most popular class separability measures in the
field of pattern recognition is the Bhattacharyya distance [34]
[31]. This measure is related to the well-known Chernoff
bound and therefore has an explicit expression for a gen-
eralized Gaussian distribution. The Transformed Divergence
is another common empirical measure of class separability,
which is computationally simpler than the Bhattacharyya
distance. However, the Bhattacharyya distance is more the-
oretically sound because it relates directly to the upper bound
of the probabilities of classification errors [35]. Both the
Transformed Divergence and Bhattacharyya distance measures
are real values between 0 and 2, where 0 indicates complete
overlap between the signatures of two classes, and 2 indicates
a complete separation between the two classes. Both measures
are monotonically related to classification accuracies. The
larger the separability value, the better the final classification
result.

In our experiments, we exploit the Bhattacharyya distance
as a measure of separability between pairs of classes. Since
we are dealing with such a distribution, we make the Bhat-
tacharyya distance our probabilistic distance. The distance
between two distributions i and j is represented by β(i, j) in
equation 1 where μi and Σi denote the mean vector and the
covariance matrix associated with distribution i, respectively.

β(i, j) = 2(1 − e−α(i,j))

α(i, j) = 1
8 (μi − μj)

′
((Σi+Σj

2 )−1(μi − μj)

+ 1
2 ln(

|Σi|+|Σj |
2√

|Σi||Σj|
)

(1)

The Bhattacharyya distance is assumed to be directly related
to classification accuracy. Also assuming that the Bayes error
is approximately equal to the upper bound that is characterized
by Bhattacharyya distance, the distance is the lower bound of
classification accuracy [36].

V. ACTION COVERAGE FORMULATION

Given a set of sensor nodes S = {s1, s2, ..., sn} placed
in a body sensor network to detect a set of movements
M = {1, 2, ..., m}, this section will provide a formal
definition of the action coverage problem.

Definition 1. Two movements j1 and j2 are said to be
compatible if they have complete separability based on
Bhattacharyya metric indicated by equation (1).

Definition 2. A compatibility graph is an undirected graph
Gi = (V, Ei) constructed for a sensor node si, where V is
a set of vertices identical to the set of movements M , and
Ei is a set of undirected edges such that edge (u, v) ∈ Ei if
movements u and v are compatible at node si.

As can be seen from the above definitions and the example
illustrated in Fig. 4, we can build compatibility graphs for
each individual node. Each sensor node has limited capability
in discriminating between pairs of movements, which is shown
in the corresponding compatibility graph. The term compatible
defined for a pair of actions is effectively representative of
movements’ distinguishability.

A. Problem Definition

The action coverage problem is used to find a minimal
set of nodes that still encompasses full coverage within
their capacity. The idea behind action coverage is that only
a subset of sensor nodes is sufficient to provide accurate
detection of every target action. We refer to such a subset as
a complete set and define it as follows.

Definition 3. A simple graph G = (V, E) is a complete
graph if for every pair of distinct vertices u and v, there is
an edge (u, v) ∈ E.

Definition 4. A subset S′ of sensor nodes (S′ ⊆ S) is
a complete set, if the compatibility graphs derived from S′

altogether form a complete graph. That is, the graph G′

computed by G′ = ∪i:si∈S′Gi is a complete graph.

Definition 5. Given a finite set of sensor nodes
S = {s1, s2, ..., sn} and a set of movements
M = {1, 2, ..., m}, Minimum-Cost Action Coverage (MCAC)
is the problem of finding a subset S′ ⊆ S in which every
pair j1, j2 ∈ M are compatible and |S′| is minimized.

B. Problem Complexity

In this section we address the complexity of the problem
outlined. We show that this problem is NP-hard, and therefore
no polynomial-time algorithm exists that solves it unless
P=NP. The formulation of the MCAC problem closely
resembles the well-studied Minimum Set Cover (MSC)
problem.

Definition 6. Let U be a set of finite elements and
S = {s1, s2, ..., sn} be a collection of subsets of U such that
their union forms U . Minimum Set Cover is the problem of
finding a subset S′ ⊆ S that covers all elements in U and for
which |S′| is minimized.

Theorem 7. The MCAC problem is NP-hard.
Proof. We prove that the MCAC problem is NP-hard by exact
reduction from MSC. Consider an MCAC instance (M,S)
consisting of a finite set of sensor nodes S = {s1, s2, . . . , sn}
and a set of movements M = {1, 2, . . . , m}. We replace
every si ∈ S with the corresponding compatibility graph
indicated by a set of edges Ei. Let S̃ be the set of all Ei’s;
S̃ = {E1, E2, . . . , En}. We form a complete graph with the
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set of edges from all compatibility graphs: Ũ =
⋃n

i=1 Ei. We
then consider (Ũ , S̃) an instance of the MSC problem. Since
MSC as an optimization problem is NP-hard, the MCAC
problem is also NP-hard.

We have proved that the Minimum Cost Action Coverage
problem is NP-hard. Consequently, our goal is to compute the
minimum number of nodes that achieve full action coverage.
This can be accomplished using either an ILP or greedy
approach. ILP is used to obtain the lower bound of the
solution, while the greedy approach provides a fast heuristic.
The quality of the solution generated by the greedy algorithm
is compared to the lower bound generated by the ILP in the
experimental results section.

C. ILP Approach

In this section, we present an integer linear programming
formulation for the action coverage problem. Since each node
is represented by a graph, we state this problem as follows.

Problem 8. Given compatibility graphs G1 = (V, E1),
G2 = (V, E2), . . . ,Gn = (V, En), and a complete set
of all edges E =

⋃n
i=1 Ei, select a subset of graphs

G′
1, G

′
2, . . . , G

′
m taken from G1, G2, . . . , Gn, such that⋃m

i=1 E′
i = E and the number of selected graphs (m) is

minimized.
The corresponding ILP formulation is presented as follows.

xi =
{

1, if graph Gi is selected
0, otherwise

(2)

Min

n∑
i=1

xi (3)

subject to: ∑
i:ej∈Gi

xi ≥ 1 ∀ej ∈ E (4)

xi ∈ {0, 1} (5)

The variables xi (i = 1, 2, ..., n) indicate whether graph Gi

is selected to form a complete graph. The inequality constraint
(4) ensures that for each edge ej in the complete graph, at
least one of the compatibility graphs that contains that edge is
selected. The objective function (3) attempts to minimize the
number of graphs selected to form a complete graph. This is
equivalent to minimizing the number of active nodes, which
suitably leads to energy reduction in the system.

In [37], Lund et al. show that the set cover problem cannot
be approximated in polynomial time to within a factor of
O(log n) unless NP has quasi-polynomial time algorithms.
In the following, we present a greedy solution for the action
coverage problem which obtains this approximation.

D. Greedy Approach

The greedy approach selects the compatibility graphs as
follows: at each stage, it picks a compatibility graph Gi that
covers the most uncovered edges; next it picks the next graph
that covers the most remaining edges; this continues until all

Fig. 5. Compatibility graphs for dynamic design decisions

edges are covered. At the end of the algorithm, graph G will
be a complete graph. A detailed description of this approach
is shown in Algorithm 1.

Algorithm 1 Greedy Solution for Action Coverage
Require: Set of compatibility graphs G1 = (V, E1), G2 = (V, E2)

,..., Gn = (V, En)
Ensure: Target complete graph G = (V, E)

CG = G1 ∪ G2 ∪ ... ∪ Gn

G = ∅
while G �= CG do

for all uncovered graphs Gi do
αi = |Gi ∩ (CG − G)|

end for
Find uncovered graph Gi s.t. Gi=argmaxi{αi}
G = G ∪ Gi

Add Gi to the list of covered graphs
end while

VI. DYNAMIC DESIGN DECISION

Earlier, we presented static action coverage for a movement
monitoring system. That is, we found the minimum number
of active nodes that cover all actions. In this section, however,
we study the potential of our approach in regards to the
dynamic deactivation of nodes. Once the action has occurred,
each node classifies it individually. The final classification
involves some notion of collaboration between the nodes in
real-time. Our dynamic sensor selection tends to find even
smaller set of nodes based on current classification results
obtained by individual nodes. Previous studies of embedded
sensor nodes have shown that data communication is very
expensive in terms of energy consumption, whereas data
processing is relatively inexpensive [38]. Therfore, further
reducing the number of nodes involved at this stage reduces
the communication overhead, and thus the power usage.

We explain details of this technique through an example
where the system consists of three sensor nodes with compat-
ibility graphs shown in Fig. 5. This system monitors subjects
for the five movements A, B, C, D and E. Sensor nodes I, II,
and III classify the movement as A, B, and D, respectively.
These classified movements are shown as shaded vertices.
The compatibility graph for node I indicates that the target
movement could be A or B as this node is not able to
distinguish between A and B. The graph for node II indicates
that the movement could be B, D, or E; and for node III,
target movement could be one of D, B, or E. By intersecting
these possibilities, we see that the global classification results
movement B. However, we do not need both node II and
node III to determine this; one or the other is sufficient. We
could potentially reduce power by eliminating one of the nodes
before initiating communication.
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Hence, we propose the following approach: First, select a
master node. This is done by selecting the node whose target
movement vertex has the highest out degree. In this case, in the
compatibility graph for node I, movement A has an out-degree
of three, for node II, movement B has an out-degree of two;
and for node III, movement D also has an out-degree of two.
Therefore, node I should be the master. Next, add the master
node to the solution space. Then, apply the action coverage
problem from the master node’s point of view and find the
minimum number of nodes that will achieve full coverage
of the target movement. In this case, only the edge (A, B) is
missing from the master node, which can be covered by either
of the remaining nodes. Finally, obtain the set of possible
classifications from each of the remaining nodes (including
the master), and intersect them to achieve final classification.
Assume the action coverage allows nodes I and II to be the
active nodes. The results issued are {A, B} and {B, E, D},
leaving B as the final target movement.

VII. SYSTEM LIFETIME FORMULATION

The action coverage problem outlined above can
significantly reduce the number of sensor nodes needed
to attain a full coverage. A solution for MCAC gives the
smallest complete set capable of providing global knowledge
of the whole system. This is done by taking into account the
information derived from the most knowledgeable nodes in
the network. By restricting action coverage to the smallest
complete set, system lifetime tends to be dependent on how
long the minimal set would work. That is, the problem
appears when a sensor node in the complete set runs out of
energy. When this happens, the system may no longer be
operational. It turns out that a global optimization is required
to obtain maximum lifetime. In other words, system lifetime
can be increased by forcing the nodes within the complete
sets to collaborate. Given a list of all possible complete
sets, the objective is to investigate how long each complete
set should be active to maximize system lifetime. In the
following formulations, we notice that each complete set can
be viewed as a set of sensor nodes capable of providing full
coverage.

Problem 9. Let S be a finite set of complete sets Sk such that
|S| = l. Let tk be the total time complete set Sk is activated.
Thus, the system lifetime, T , is computed by summing tk.
Also, let Ei be the initial energy per unit time for node si

and aik be a constant indicating whether complete set Sk

includes sensor node si or not. The maximum lifetime problem
is the problem of finding the time values tk such that T is
maximized.
This problem can be formulated as follows.

ti = total time complete set Sk is activated (6)

aik =
{

1, if complete set Sk includes node si

0, otherwise
(7)

Max T (8)

subject to:

l∑
k=1

tk = T (9)

l∑
k=1

aiktk ≤ Ei ∀i ∈ {1, 2, . . . , n} (10)

tk ≥ 0 ∀k ∈ {1, 2, . . . , l} (11)

The objective function (8) implies that the system lifetime
is the term to be maximized. The equation (9) ensures that
all movements are covered during system lifetime. At each
time unit, there is exactly one complete set consisting of active
nodes that cover the desired actions. The inequality (10) limits
the total activation time for each sensor node (si) to its initial
energy per unit time (Ei).

The above formulation is a typical LP formulation where
tk are real numbers and the objective is to maximize the
lifetime T . The optimal solution consisting of values of tk,
and consequently T , can be computed in polynomial time.
The total time that sensor si is active can be computed by
equation (12).

Ti =
l∑

k=1

aiktk (12)

Since the values tk represent the total time the nodes
within each complete set are activated, they cannot specify
the activation and deactivation times for each sensor node in
a direct way. That is, we are required to find a scheduler
that determines the time frame each sensor node should be
active to impart full coverage over the lifetime. Fortunately, the
above formulation gives direct insights into node scheduling
because any scheduling considered for complete sets is still
schedule-preserving for sensor nodes. The reason is that each
complete set can be viewed as a set of sensor nodes, and
different complete sets are mutually exclusive; i.e., they cannot
occur at the same time. Thus, an activation/deactivation of
each complete set directly influences the nodes within that
set.

An easy-to-implement algorithm that can be utilized for
node scheduling is to activate each complete set Sk for its
total lifetime tk. Given complete sets Sk and corresponding
activation times tk, this algorithm works in this way: Choose a
complete set Sb arbitrarily. Let tb be the activation time for Sb.
Activate all sensor nodes within Sb for time tb then remove
set Sb from further consideration. Repeat the algorithm until
there is no more complete set to process.

This optimization approach assumes equal probability of
occurrence for a priori movements of interest. The solution to
this LP formulation gives the optimal activation time associ-
ated with each sensor node. The technique is still applicable
for sensor activation in real time, where no information on
the frequency of occurrence of each movement is available.
In this case, the system can be forced to activate complete sets
with respect to the remaining energy within each set.
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TABLE II
MOTE LOCATIONS

No. Description
1 Waist
2 Left-forearm
3 Left-arm
4 Right-forearm
5 Right-ankle
6 Right-thigh
7 Left-ankle
8 Left-thigh

VIII. EXPERIMENTAL ANALYSIS

We prepared an experiment with eight sensor nodes placed
on a subject as shown in Fig. 2, using Telos motes by moteiv R©

with our custom-designed sensor board. The location of each
sensor node is also listed in Table II. For each of the five data
streams (x, y, z acceleration and x, y angular velocity), we
extracted the seven features previously listed. In this particular
experiment, we had three male test subjects between the ages
of twenty-five and thirty-five. Each subject performed the
twenty-five movements listed in Table III, for ten trials each.
The following experimental analyses use the data collected
from this experiment.

A. Compatibility Graphs

For each sensor node the Bhattacharyya distance is calcu-
lated between all movement pairs, and compatibility graphs
are generated. A compatibility graph generated from data
collected from the waist node is shown in Fig. 6. For this
figure, a subset of movements is shown for simplicity. Each
vertex corresponds to a movement as labeled in Table III. The
edges represent pairs of compatible movements. For example,
there are edges between vertex 10 and all other vertices except
14 and 22. This means the action “turn clockwise 90 degrees”
can be distinguished with a high level of confidence from all
actions except “look back clockwise” and “grasp an object
with two hands”. The rest of the links shown in the figure can
be interpreted similarly.

In Table IV, we show statistics extracted from eight compat-
ibility graphs considering 25 movements. The second column
(|E|) represents the total number of edges within each graph.
The third column (AD) shows the average outdegree of the
vertices. This measure can imply the level of separability from
the rest of movements. The next two columns (MnD and MxD)
present the minimum and maximum outdegrees among all
movements. Finally, the last two columns show the movements
that have minimum and maximum outdegrees respectively. For
instance, in the compatibility graph constructed for the fourth
node, movement 8 (kneeling) has the smallest degree (12), but
movements 2, 12 and 13 are completely separated from the
rest, as they have a degree of 12.

B. Static Design Coverage

We compare the ILP and greedy approaches using our data.
Using both algorithms, we determine the number of nodes
needed to distinguish between all twenty-five movements. We
split the movements into four mutually exclusive subsets,
shown under the “Category” label in Table III. The split is

3
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8

1014

1517

20

22

23

25

Fig. 6. Compatibility graph based on data from the waist node for 12
movements

performed intuitively and is based on the level of involvement
of body segments in each movement. This categorization
provides meaningful information for designing a system that is
restricted to monitoring particular movements. The idea comes
from the fact that in many medical applications, only a subset
of actions are considered valid movements with respect to the
temporal and spatial conditions. In the temporal case, the set
of actions that are addressed changes from time to time while
in the spatial case, movements of interest are updated when
the subject moves to a new geographical area. Physicians need
to quantify the level of daily activities with respect to certain
movements for their patients. Furthermore, the movements a
person might perform can significantly change when cooking
in the kitchen compared to going to the gym. We present
results for a few categories, but the approach can be used for
any subset of interest. Table V compares the performance of
the two methods on the full set of movements and on each
subset. The solutions are indicated using a binary pattern.
The nodes that are selected to be active nodes are expressed
by a “1” in the resulting pattern. For example, to provide
distinguishability information for all twenty-five movements,
the ILP technique chose nodes 3, 4, 6 and 7 while the
greedy algorithm chose nodes 1, 2, 4, 6 and 7. As expected,
the ILP generated a slightly smaller set of nodes compared
to the greedy approach. As the results show, the system is
capable of providing full coverage of the movements using
only four sensor nodes placed on four different segments
of the body. To test the effectiveness of action coverage,
we also compare the classification accuracy before and after
node reduction. The results are shown in Table VII where the
second and third columns represent the accuracy using original
data and the data collected from active nodes respectively.
The very small differences between two cases (e.g. 1.5% for
k=1) demonstrate the capability of action coverage to reduce
the number of active nodes while maintaining an acceptable
quality of service.

Table VI presents the amount of power saving along with
the running time of the ILP algorithm. The power saving
shows the total percentage of the power preserved in the sys-
tem compared to the case when no power reduction technique
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TABLE III
MOVEMENTS FOR EXPERIMENTAL ANALYSIS

No. Description Category
1 Stand to sit Full
2 Sit to stand Full
3 Stand to sit to stand Full
4 Sit to lie Full
5 Lie to sit Full
6 Sit to lie to sit Full
7 Bend and Grasp Upper
8 Kneeling, right leg first Lower
9 Kneeling, left leg first Lower
10 Turn clockwise 90 degrees Turning
11 Turn counter clockwise 90 degrees Turning
12 Turn clockwise 360 degrees Turning
13 Turn counter clockwise 360 degrees Turning
14 Look back clockwise Upper
15 Move forward (1 step) Full
16 Move backward (1 step) Full
17 Move to the left (1 step) Full
18 Move to the right (1 step) Full
19 Reach up with one hand Upper
20 Reach up with two hands Upper
21 Grasp an object with right hand, turn 90 degrees and release Turning
22 Grasp an object with two hands, turn 90 degrees and release Turning
23 Jumping Full
24 Going upstairs (2 stairs) Lower
25 Going downstairs (2 stairs) Lower

TABLE IV
COMPATIBILITY GRAPH STATISTICS

Node # |E|1 AD2 MnD3 MxD4 MnD V5 MxD V6

1 263 21 17 24 {9,24} {4,5,6,7,12,13,23}
2 250 20 14 24 {9,21} {12,13,23}
3 263 21.04 16 24 {24} {4,5,6,12,13,20,22,23}
4 255 20.4 12 24 {8} {2,12,13}
5 259 20.72 15 24 {17} {4,5,6,12,13}
6 252 20.16 15 24 {18} {1,2,3,12,13}
7 260 20.8 15 24 {18} {4,5,6,12,13}
8 253 20.24 13 24 {17,18} {1,2,3,12,13}

1. Number of edges
2. Average degree of the vertices
3. Minimum degree of the vertices
4. Maximum degree of the vertices
5. Minimum degree vertices
6. Maximum degree vertices

TABLE V
SOLUTIONS TO ACTION COVERAGE PROBLEM

Movements ILP Solution Greedy Solution
Mote # 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
All 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0
Upper Body 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Lower Body 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
Turning 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
Full Body 0 0 0 0 0 1 1 0 1 1 0 0 0 1 0 0

is applied. We solve the linear programming optimization
problem in MATLAB on a Dell Laptop with a 1.6GHz Core
2 Duo processor. The execution time of the ILP for 25
movements is about 6.8 seconds.

C. Dynamic Design Coverage

Throughout the classification, three of the trials for each
subject and movement were used for training, and the re-
maining trials were used for validation. Since our experiments
are carried out in a controlled environment, this split between

TABLE VI
ANALYSIS OF ILP SOLUTIONS

Movements #Nodes Power Saving(%) Execution Time(sec.)
All 4 %50 6.761290
Upper Body 1 %87 0.082245
Lower Body 1 %87 0.060753
Turning 2 %75 0.065421
Full Body 2 %75 0.074850

training and test data provides good classification results as we
will demonstrate later in this paper. Per-node feature extraction
is performed to obtain seven features for each action across
five sensor readings. We use a data fusion scheme to integrate
data from different nodes at the feature level. Therefore, the
final classifier works on the same training and test sets whereas
the feature space has been extended by the sensor nodes. Only
the four nodes selected by ILP for all movements are used for
the dynamic analysis (see Table V). Compatibility graphs are
generated from the training set. Classification is performed
using a k-NN classifier, where k varies from 1 to 8. This
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TABLE VII
CLASSIFICATION ANALYSIS

K Accuracy9 Accuracy10 Accuracy11 #Nodes12

(No reduction) (Static) (Dynamic) (Dynamic)
1 %97.5 %96.0 %92.2 1.84
2 %96.6 %95.0 %89.9 1.85
3 %96.6 %94.3 %88.9 1.85
4 %94.8 %95.2 %89.1 1.85
5 %95.4 %92.9 %88.2 1.86
6 %91.2 %89.5 %81.1 1.86
7 %90.3 %90.3 %80.8 1.85
8 %89.5 %88.0 %78.9 1.86

9. Classification accuracy considering all sensor nodes
10. Classification accuracy after static node reduction
11. Classification accuracy after dynamic node reduction
12. Average number of nodes in dynamic mode

dynamic technique further reduces the number of active nodes
to an average of 1.84 nodes (for k = 1) per classification.

D. Classifier Accuracy

Classification accuracy exhibits how confident twenty-five
movements can be recognized. Therefore, we define accuracy
as follows:

A =
TP + TN

N
(13)

Where TP is the number of true positive samples, TN
represents the number of true negative samples and N is the
total number of test points.

We feed all the features from all eight motes into a k-NN
classifier where k = 1, giving an accuracy reading of 97.5%.
We repeat the test using data from only the four nodes selected
by the ILP as shown in Table V and reach an accuracy of
96.0%. Finally, we used a classifier based on the dynamic
design coverage solution and reach an accuracy of 92.2%.
The complete results are shown in Table VII.

E. Lifetime

In this section, we will present the results of system lifetime
optimization using real data. The initial energy per unit time
for each sensor node is calculated based on the overall active
power consumption. To calculate this value, we measured the
transmission power consumption of a Telos mote equipped
with a tri-axial LIS3LV02DQ accelerometer and a bi-axial
IDG-300 gyroscope. The average power consumed in a five-
minute duration was 88mW . We assume that the system is
equipped with two 1.5V, 2000mAh AA batteries. We also
assume that all sensor nodes have the same amount of initial
energy. We then solve the power lifetime problem for different
categories of movements as illustrated in Table VIII. For each
set of actions, the total system lifetime (T ) and the sensor total
activation time (Ti) are calculated. As shown in Table VIII,
for some set of actions, the system lifetime is limited by the
lifetime of a single node. For instance, if the system is used for
detecting turning activities, it cannot work beyond 68 hours,
which is the lifetime for node 4. However, if the system is used
to identify lower-body actions, it would be operational for 204
hours. In Table IX, we compare the lifetime of the proposed

Activation Duty 68 68 68
1
2
3
4
5
6
7
8

Time 0 68 136 204

N
od

e 
#

Fig. 7. Node Scheduling for Lower Body Movements

model in section VII to the case where the system operates
using the minimal set given by the action coverage problem.
The results show that when considering several solution sets
as derived in section VII, the system lifetime can be increased
by a factor of three.

To determine a time table for sensor activa-
tions/deactivations, a random scheduler is employed as
previously discussed. The results demonstrated in Fig.7
for the lower body movements show the activation duty
associated with each mote. A shaded segment represents an
activation duration for the corresponding node. Sensor node
7 which provides a full coverage for lower-body movements
becomes active first and works for 68 hours. Sensor node 5
which was idle for the first 68 hours of the system operation,
wakes up and works for 68 hours until it dies at hour 136.
Next complete set then activates nodes 3, 4, and 8. These
nodes work for 68 hours until they die at hour 204.

IX. CONCLUSION AND FUTURE WORK

In this article, we proposed a novel power optimization
technique that examined the sensor coverage problem from
a classification perspective. We used compatibility graphs
to combine local information attained by individual nodes
and ensure full sensing coverage. We formulated the action
coverage problem, which attempts to minimize the number
of active nodes in the system while maintaining acceptable
accuracy for action recognition. Furthermore, we demonstrated
how the collaboration of sensor nodes can lead to maximal
lifetime. While each individual node has limited knowledge
about the system, global knowledge of the system can be
achieved by the data fusion technique described in this paper.
The experimental results demonstrated the effectiveness of our
approach.

Using a hidden Markov model, we may be able to further
reduce the number of potential movements. For instance,
someone lying on a bed cannot fall, walk, sit down, or jump.
We plan to investigate how this model can assist in further
node reduction and power optimization.
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