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Abstract—Wearable sensor platforms have proved effective
in a large variety of new application domains including wellness
and healthcare, and are perfect examples of cyber physical
systems. A major obstacle in realization of these systems is
the amount of energy required for sensing, processing and
communication, which can jeopardize small battery size and
wearability of the entire system. In this paper, we propose an
ultra low power granular decision making architecture, also
called screening classifier, that can be viewed as a tiered wake
up circuitry. This processing model operates based on simple
template matching. Ideally, the template matching is performed
with low sensitivity but at very low power. Initial template
matching removes signals that are obviously not of interest
from the signal processing chain keeping the rest of processing
modules inactive. If the signal is likely to be of interest, the
sensitivity and the power of the template matching blocks
are gradually increased and eventually the microcontroller
is activated. We pose and solve an optimization problem to
realize our screening classifier and improve the accuracy of
classification by dividing a full template into smaller bins, called
mini-templates, and activating optimal number of bins during
each classification decision. Our experimental results on real
data show that the power consumption of the system can be
reduced by more than 70% using this intelligent processing
architecture. The power consumption of the proposed granular
decision making module is six orders of magnitude smaller than
state-of-the-art low power microcontrollers.

Keywords-Embedded Systems, Healthcare, Body Sensor Net-
works, Signal Processing, Power Optimization.

I. INTRODUCTION

Lightweight wearable computers, also called Body Sensor

Network (BSNs) or Body Area Networks (BANs), bring

to fruition many opportunities to continuously monitor the

human body with sensors placed on body or implanted in

the body. These platforms revolutionize many application

domains including healthcare and wellness applications. Ex-

amples of such applications include rehabilitation [1], sports

medicine [2], geriatric care [3], gait analysis [4], diagnosis

of obesity and depression [5, 6], and detection of neuro-

degenerative disorders such as Alzheimer’s [7], Parkinson’s

[8], and Huntington’s [9] diseases. Lightweight wearable

computers are perfect examples of cyber physical systems

where lightweight embedded computers are tightly coupled

with the physical world (i.e. human body). In the past few

years, new wearable applications have evolved and proved

to be effective. Yet, one of the major obstacles is the size

and weight of the sensor units. Smaller wearable units can

enhance comfort and compliance. Smaller implantable units

can enable many new applications. Battery size has been

the dominating factor in the size of the sensors. Batteryless

units operating on piezo, or units that require significantly

smaller batteries, are not currently possible. The proposed

technique in this paper aims to significantly reduce the

power consumption of wearable units, and specifically the

processing architecture.

Wearable sensor units are often composed of sensors, a

processing unit (e.g. a microcontroller), a communication

unit and a battery. Our current focus is on wearable mo-

tion sensors that are used for detection of human actions

such as ’Sit to Stand’ or ’Lie to Sit’. We propose an

architecture, equipped with a granular decision making
module (GDMM), that monitors incoming signals/actions.

The granular decision making module attempts to detect

actions that are not of interest as early as possible while

consuming the least amount of energy. If the incoming action

is likely to be of interest, the module will turn on the

main signal processing unit (e.g. the microcontroller) for

further processing. The granular decision making is done

in a sequence of coarse to fine grained operations. At the

beginning, the screening or preliminary signal processing

may not exhibit high accuracy for classifying the incoming

actions, but operates at an ultra low power. The objective

of the initial screening is to identify incoming actions that

are obvious rejects or accepts. As the module begins to

observe the incoming actions that are likely of interest,

more accurate decision making and screening processes are

activated. Intuitively, screening at the beginning is done by

a classification module with tunable parameters adjusted to

consume the least amount of energy (e.g. by observing fewer

samples with smaller bit resolution). The tunable parameters

are adjusted to enhance the accuracy of signal processing

and classification as the incoming signal or incoming action

travels through screening blocks in the GDMM. The tunable

parameters include time duration of actions, number and

location of samples within each action, and bit resolution of
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sampled data. Collectively, screening blocks can select any

combination of these transformations to adjust processing

(or power) vs. accuracy. The decision making is performed

in this fashion because often the incoming action is so

dissimilar to the action of interest (also called target action)

that it can be rejected even with a coarse-grained signal

processing. For incoming actions that the screening block

cannot reject with high confidence levels, the main signal

processing unit will be activated. The main advantage of

this method is the power saving due to removing actions

that are not of interest from the signal processing chain as

early as possible, deactivating the remaining modules in the

signal processing chain.

Applications of healthcare monitoring have unique prop-

erties motivating our proposed technique: Events of interest
often occur with a low duty cycle (e.g. < 1%−5%) and the

randomness to the incoming signals, even in cases where the

signals are not of interest, is not significant. This assumption

holds for many wearable applications where the objective is

to detect sparse events such as walking, using motion sen-

sors, [10–13], cardiac arrest [14, 15] and seizures, [16, 17]

using implantable sensors. We utilize these unique properties

of the applications and the physical world to reduce the

power consumption by orders of magnitude in the cyber

world. Although in our approach, every effort will be taken

to ensure that granular decision making module provides

acceptable precision in signal processing, in the events where

it generates false positives, the sole drawback is the energy

consumed to wake up the main signal processing unit for

improved precision. Finally, the events are captured with a

low sampling rate (e.g. ≤ 100Hz − 1kHz) which implies

that the processing can also be done at a slow speed. Unlike

Wireless Sensor Networks (WSNs), wearable sensors often

observe the same phenomenon, but with different angles of
view. The data fusion approach in wearable computers is

analogous to collaborative image processing in vision where

a number of cameras are placed around the room and observe

the same phenomenon, but with different angles of view. In

WSNs, however, sensors are spread over a large area and

often only a small number of sensors capture an event.

II. RELATED WORKS

Several ultra low power wearable systems, with signal

processing capabilities, at the power budget of less than

hundreds of μW have been proposed. The proposed systems,

however, are either not programmable (except that they may

provide a few tunable parameters), or the programmability

is handled completely by a microcontroller. An intraocular

CMOS pressure sensor system implant was proposed which

contains an on-chip micro mechanical pressure sensor array,

a temperature sensor, a microcontroller-based digital control

unit, and an RF transponder [18]. An interface chip for

implantable neural recording was proposed with tunable

band-pass filters and adjustable gain [17]. A batteryless

accelerometer system, that has a 3D loop antenna and

utilizes the radio wave for power feeding was proposed.

However, the control unit of the system is a microcontroller

and it is unclear how it can be powered up by radio wave

power feeding [19].

Several other systems were suggested that are primarily

tailored towards specific applications, and are not general-

izable. Examples include a machine-learning based patient-

specific seizure detector [20], an implantable blood pressure

sensor, an ECG sensing microsystem with adaptive RF

powering [15, 21–23], an implantable batteryless telemetric

microsystem for EMG recording [24] and a batteryless

MEMS implant for cardiovascular applications [25].

III. PRELIMINARIES

In this section, we present major hardware/software com-

ponents of a typical BSN platform. Our focus in this work

is on movement monitoring applications that use inertial

information to examine human motions for the purpose of

patient monitoring, diagnosis and treatment. However, the

proposed methodology can be applicable to many other

monitoring domains (e.g. a pacemaker that is required to

detect abnormal ECG signals).

A. Sensor Nodes

A BSN is composed of several sensor nodes mounted on

the patient’s body, embedded with the clothing, or implanted

in the human body. For the purpose of movement moni-

toring, motion sensor nodes are utilized. In our platform,

each node has a microcontroller (i.e. TI MSP430) for signal

processing, and a custom-designed sensor board including a

3-axis accelerometer and a 2-axis gyroscope for capturing

inertial information. The sensor node has also a radio module

for communication with other sensor nodes in the network

or with a gateway such as a cell phone.

B. Per-node Signal Processing

Each sensor node has a microcontroller which can sample

motion sensors at a certain rate. The acquired signals need to

undergo specific embedded signal processing tasks in order

to make higher level interpretations of human movements.

The goal of main signal processing chain (MSPC) is to

extract useful information from sensor data. Frequently, this

data is a high-level observation, such as “Is the subject

running?” or “What is the stride length when the subject

is walking?”. In other words, the purpose of main signal

processing is to provide a ‘fully’ SW programmable environ-

ment for development of ‘highly’ reliable signal processing

technique for action detection/verification and extracting de-

tails from the signals (e.g. balance during ‘sit to stand’ when

it occurs). Typically, signal processing tasks are imposed by

the application of the BSN. However, a basic requirement of

movement monitoring applications is to detect actions first,

and perform additional processing next. This application is
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Figure 1. Overall system architecture illustrating granular decision making
module (GDMM) in connection with communication unit, sensor units, and
other computing modules.

usually referred to as action recognition [26–28]. Typical

chain of signal processing for action recognition include

filtering, segmentation, feature extraction, feature condition-

ing, and classification. The sampled data are first filtered to

improve signal to noise ratio. A segmentation module [29–

31] then separates portions of the signal that correspond to

activities from those associated with rest (non-activity). The

set of statistical features extracted from individual segments

is reduced in size using feature conditioning techniques to

speed up and enhance the classification task. At the end of

the main signal processing chain (MSPC), a classifier (e.g.

k-Nearest Neighbor [32]) is utilized to identify the action

performed by the subject.

IV. PROPOSED ARCHITECTURE

In many BSN applications, only a very small set of human

actions is of interest. For example, gait analysis only is

concerned with walking, fall detection with falls, Parkinson’s

disease monitoring with certain movements such as tremors,

and sleep apnea with restless leg movements [33]. These

target actions may occur infrequently. Considerable energy

is wasted processing non-target actions. Efficiently rejecting

non-target actions with a screening classifier could lead to

a significant increase in system lifetime.

A. Granular Decision Making Module

An overall architecture of the proposed screening ap-

proach is illustrated in Figure 1. The granular decision

making module (GDMM), which is composed of several

coarse to fine grained screening classifiers, is responsible

for screening sensor readings and activating main processing

unit upon arrival of an event (e.g. action/movement) of

interest.

Figure 2 shows block diagram of the proposed screening

classifier operating based on template matching. There are

two main components in the diagram, a granular decision

making module, and the main signal processing block. The

main signal processing is implemented on the main pro-

cessor (e.g. microcontroller). The granular decision making

module is an ultra low power screening classifier aiming

to reject actions that are not of interest. This functionality

is created by a multiplier-accumulator structure that imple-

ments a template matching function.

B. Template Matching

The screening classifier and the main signal processing

form a rejecting chain of two classifiers. While the main

signal processing uses classical patter recognition techniques

to classify actions, the screening classifier employs simple

template matching techniques to estimate the likelihood of

occurrence of a target action. An unknown action is pro-

cessed by the template matching block first. If the template

matching block fails to reject the action, it is evaluated using

the main signal processing block (i.e. the microcontroller).

A template matching block functions as a binary classifier

based on the cross correlation [34]. The incoming signal

is compared to a predefined template of the target action.

The comparison assigns a score value representing similarity

between the current action and the template (target-action).

The cross correlation score is then compared against a

threshold and the action is either accepted or rejected. Only

in case of acceptance the main signal processing is activated.

The cross correlation measure was chosen because it can

be implemented in HW by a series of multiplications and

additions.

C. Tunable Parameters for Power Optimization

The template matching block described previously can

be optimized for further energy saving by adjusting several

tuning parameters. These parameters include time duration

of actions considered for cross correlation calculation, num-

ber and location of samples, and bit resolution of data.

This allows us to use a sequence of template matching

blocks each contributing to the classification of events to

certain level. The focus of this paper is on minimizing

the number of samples used for calculation of the cross

correlation function. Motivation behind this optimization is

that even with a fixed bit resolution and action duration, only

small portions of the template need to be considered when

measuring similarity of an input signal with the template,

hence the possibility to further save on the computations and

energy consumption. We address this optimization problem

by dividing a full template into several bins, each forming

a mini-template. Mini-template approach will further reduce

power consumption of the system allowing for realization

of significantly less power-hungry wearable units that can

eventually enable batteryless technologies for monitoring

platforms. Furthermore, mini-templates highlight prominent

patterns in the signal and eliminate irrelevant portions of

the signal, and therefore, improve performance of signal

processing and sensitivity of the classification system.
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Figure 2. Block diagram of the granular decision making module (GDMM) and main signal processing chain (MSPC).
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Figure 3. An example of three templates each divided into three mini-
templates.

Figure 3 illustrates motivation behind using mini-

templates. This figure shows real data collected with our

wearable sensors where only three actions are used for

visualization. The graphs show raw sensing readings from

Z-axis accelerometer of a node placed on the ‘Waist’ of

a subject. Assume ‘Sit to Stand’ (bold black plot) is the

action of interest and the other two actions, ‘Kneeling’

(dashed blue plot) and ‘Step Forward’ (dashed red plot)

may occur as non-target. Clearly, if the entire template

is considered, the target action can be distinguished from

the others based on the cross correlation measure. Assume

each template is divided into three bins as indicated by (I),

(II), and (III). None of the bins can solely achieve small

false positive rates. For instance, if only bin (I) is used, a

‘Step Forward’ action may be classified as ‘Sit to Stand’

leading to high misclassification rate. Similarly, bins (II)

and (III) are strongly correlated with the target action (‘Sit

to Stand’) resulting in a large number of false positives.

However, assume the case where only bins (I) and (II) are

activated for template matching. The only action that can

be accepted by both bins is ‘Sit to Stand’. If an action is

accepted by bin (I), it can be confidently considered as either

‘Sit to Stand’ or ‘Step Forward’. If the action is further

accepted by bin (II), the choice of ‘Step Forward’ is ignored

leaving ‘Sit to Stand’ as the final classification decision. By

activating only two bins rather than the entire template, one-

third of the multiply-add operations are discarded from the

template matching resulting in 33% savings. Therefore, our

objective is to find a minimum subset of template bins that

can confidently activate the main signal processing block

while maintaining low false positive rates. We note that

the ordering of processing mini-templates is also important

because a suboptimal ordering can result in a larger number

of bins being processed.

V. MINIMUM SIZE MINI-TEMPLATE SET

As discussed in previous section, the template matching

block in Figure 2 can be divided into several lower cost

blocks associated with a set of predefined mini-templates.

We pose an optimization problem that finds the minimum

subset of template bins and their ordering required for

detection of a target action subject to a given upper bound

on the false positive rates. We call this optimization problem

Minimum Size Mini-Template Set (MSMTS). Throughout

this section, we use the notations in Table I to formulate

this problem.

A. Template Generation

Given a target action â and A = {a1, a2, . . . , an} a set of

n non-target actions, we generate templates T̂ , and {T1, T2,

. . . , Tn} from a set of training trials. Templates are generated

as shown in Definition 2 according to the similarity score

between training trials. The MSMTS problem constructs a

decision path using properties of these templates.

Definition 1 (Similarity Score): Given two time series

signals f and g of length N , the similarity score γ(f ,g)

between the two signals is defined based on their normalized

8080



Table I
NOTATIONS

Term Description
â target action
A set of n not-target actions
ai i-th non-target action

al
i l-th training trial of action ai

Ti template generated for action ai

K number of template bins
B set of template bins due to template partitioning
bk k-th template bin due to template partitioning
MTik k-th mini-template of ai associated with bk

γ(Ti, Tj) similarity score between templates Ti and Tj

O optimal subset of bins used for classification
R size of optimal set O found by MSMTS problem

cross correlation by

γ(f, g) =
∑N

t=1[f(t) − f̄ ][g(t) − ḡ]√∑N
t=1[f(t) − f̄ ]2

∑N
t=1[g − ḡ]2

(1)

where f̄ and ḡ denote mean values of f and g.

Definition 2 (Template): Given an action ai with L train-

ing trials, a template Ti for ai is the best representative trial

with respect to the similarity score γ between all pairs of

trials. The trial with the highest summed similarity score

between itself and the other trials is selected, as shown in

(2).

Ti = arg max
al

i

∑
r

γ(al
i, a

r
i ) (2)

Each template is evenly divided into K bins B = {b1,

b2, . . . , bK}. Each bin bk represents a set of mini-templates

associated with target action and different non-target actions.

We investigate how each one of the bins contributes to

detection of a target action and choose the best sequence

of template bins to be examined during template matching.

B. Problem Formulation

In this section, we formally define MSMTS problem.

Definition 3 (Weakly Correlated): Within each bin bk, an

action ai is referred to as weakly correlated with the

target action if γ(M̂T k,MTik) < 1 − εk, where M̂T k is

the k-th mini-template associated with target action â and

MTik denotes the k-the mini-template associated with ai.

Similarly, for each bin bk, a set WCSk, Weakly Correlated
Set, is defined as the set of actions that are weakly correlated.

The value of εk is a design parameter which determines

the accuracy of the system. Higher values of εk represent

higher likelihood of match with target action, resulting in

higher true positive rates and lower false positive rates.

In fact, thrk = 1 − εk is the threshold (see Figure 2)

for acceptance/rejection of incoming signals. Intuitively, an

incoming signal that is weakly correlated in bk will be

rejected. The signal, however, will be further processes by

subsequent bins if it is accepted by a bin bk on the decision

path. Clearly, in order to accept an event, it needs to be

weakly correlated with all non-target actions.

Definition 4 (Complete Ordering): An ordering O={b1,

b2, . . . , bR} is complete if the following condition holds.

R⋃
k=1

WCSk = A (3)

Definition 5 (Ordering Cost): Let O={b1, b2, . . . , bR} be

a complete ordering of sensor nodes and f(ai) a function

that gives the index of the first bin in which the following

condition holds:

{ai | ai ∈ A} ⊂
f(ai)⋃
k=1

WCSk (4)

That is, f(ai) is the number of bins that need to be

examined in order to reject ai. Then the total cost of the

ordering is given by the following equation:

Z =
∑
ai∈A

f(ai) (5)

Problem 1 (Min Size Mini-Template Set): Given a finite

set A and WCS, where WCS={WCS1, WCS2, . . . ,

WCSK} is a collection of subsets of A such that the union

of all WCSi forms A, MSMTS is the problem of finding a

complete linear ordering such that the cost of the ordering

is minimized.

C. Problem Complexity
Through the following theorem, we prove that the

MSMTS problem is NP-hard.
Theorem 1: The Min Size Mini-Template Set problem is

NP-hard.

Proof: It is straightforward to see that Min Sum Set

Cover (MSSC) problem can be reduced to our MSMTS

problem. The known MSSC problem is described as follows.

Let U be a finite set of elements and S={S1, S2, . . . , Sm} a

collection of subsets of U such that their union forms U . A

linear ordering of S is a bijection f from S to {1, 2, . . . , m}.

For each element e ∈ U and linear ordering f , we define

f(e) as the minimum of f(S) over all {Si : e ∈ Si}. The

goal is to find a linear ordering that minimizes
∑

e f(e). It

is easy to see that by replacing elements of U with those of

A, and also replacing subsets Si with WCSi we obtain the

same problem as MSSC. Therefore, MSMTS is an NP-hard

problem.
Theorem 2: There exists no polynomial-time approxima-

tion algorithm for MSMTS with an approximation ratio less

than 4.
Proof: Reducing MSSC problem to MSMTS preserves

approximation of any corresponding solutions. Therefore,

any lower bound for MSSC also holds for MSMTS. In [35],

it is shown that for every ε > 0, it is NP-hard to approximate

MSSC within a ratio of 4 − ε. Therefore, 4 is also a lower

bound on the approximation ratio of MSMTS.
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Algorithm 1 Greedy solution for MSMTS

Calculate set WCSk for every bin bk

O = φ
while O �= A do

Select bin bk such that WCSk is maximum cardinality

O = O
⋃

bk

for all e ∈ WCSk do
remove e from all WCSj (j={1,. . . ,K})

end for
end while

Table II
EXPERIMENTAL ACTIONS

No. Action
1 Sit to Stand
2 Sit to Lie
3 Bend to Grasp
4 Kneel
5 Rise from Kneeling
6 Turn Clockwise
7 Step Forward
8 Step Backward
9 Jump

D. Greedy Solution

The greedy algorithm for MSMTS is adapted from the

greedy algorithm for MSSC and is shown in Algorithm 1.

At each step, it searches for the bin bk that can reject

largest number of remaining non-target events (by searching

through the WCSk). It then adds such a bin to the solution

space O and removes the actions it can reject from further

consideration. The algorithm terminates when all non-target

actions are rejected. The approximation ratio is 4 as previ-

ously discussed.

VI. EXPERIMENTAL VERIFICATION

In order to demonstrate performance of the proposed sig-

nal screening approach, we carried out a set of experiments

where three subjects were asked to perform the actions listed

in Table II, each ten times. Each subject wore a set of seven

sensor nodes, as described in Section III-A, secured to the

upper and lower body segments as well as the ‘Waist’. The

nodes were programmed to sample five sensors including x,

y, z accelerometer and x, y gyroscope at 50 Hz. The data

were collected using a custom-designed MATLAB tool for

further processing. We used 50% of the trials as training

set for template generation and finding optimal decision

path, and the remaining trials as test set for estimating the

accuracy of the system in classifying actions.

A. Power Consumption of Screening Blocks

Our objective was to measure energy saving that can be

obtained when one action is aimed to be the target action

(i.e. identified & accepted) and the rest are considered as

non-target. For each action, we generated a unique template

Table III
OPTIMAL ORDERING (DECISION PATH)

K B (Bin Set) Bin Length Decision Path Active Fraction (%)
2 {b1,b2} 150 b1 → b2 100.0
5 {b1,. . . ,b5} 60 b2 → b1 40.0

10 {b1,. . . ,b10} 30 b3 → b1 20.0
15 {b1,. . . ,b15} 20 b3 → b5 18.3
20 {b1,. . . ,b20} 15 b2 → b6 17.0
25 {b1,. . . ,b25} 12 b2 → b8 15.0
30 {b1,. . . ,b30} 10 b3 → b9 13.3

as described in Section V-A. As discussed in Section IV-C,

the power consumption of each screening block depends

on several tunable parameters. In particular, the number of

samples used for template matching can affect the power

consumption significantly.

To estimate power consumption of the template matching,

the screening blocks were implemented using Multiplier-

ACcumulator (MAC) units. MACs were designed using

Verilog. The cross-correlation was enabled by a series of

MAC steps depending on the number of incoming samples.

At each clock instant, the digitized template data and the

incoming signal data were multiplied and added to the

previous MAC value. This continued, depending on the

number of samples for the incoming event. The design

was synthesized using Synopsys with the 45 nm NanGate

Open Cell library. The simulations of the Verilog RTL were

observed using Synopsys VCS. The switching activity was

then considered and the power numbers were computed in

Synopsys. The power values were then computed in a similar

fashion for templates and mini-templates of different lengths

on the incoming data.

B. Full-Template vs. Mini-Template

In the first step, we considered ’Sit to Stand’ as target

action and all other actions as non-target. The power con-

sumption of a screening block with full size template was

computed as discussed in Section VI-A. The power con-

sumption of the full template screening block was 6.58 nW

which is significantly smaller than the power consumption of

a typical signal processing chain (e.g. power consumption of

processing unit of a Telos mote 3 mW in active mode). We

then divided the entire template into several bins and used

the Min Size Mini-Template Set problem to find optimal

ordering of the bins that are required for detecting ’Sit

to Stand’. A template on Z-axis accelerometer is a vector

of 300 samples that corresponds to 6 seconds of sensor

readings. A choice of K=10 (for example) generates ten

bins, each having a length of 30 samples. We solved our

optimization problem (see Problem 1) using the greedy

algorithm described in Algorithm 1. Ideally, only a small

subset of the bins would suffice for reliable identification

of the target action. Table III shows optimal ordering of the

active bins (decision path) for different number of bins (K),

ranging from 2 to 30. The last column shows the percentage
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Figure 4. Decision path and accuracy in terms of acceptance rate of
individual screening blocks for the case of K=30. Resulting path has only
two screening blocks associated with 3rd and 9th mini-templates.

of the full template that needs to be active during processing.

A more detailed illustration of decision path for the case

of 30 bins is given in Figure 4. This decision path has

only two screening blocks, b3 and b9. Out of all incoming

action trials, 83% are rejected by b3 resulting in 17% of

the movements being passed to the next screening block,

b9. This last screening block will reject another 3.7% of

the trials leaving only 13.3% being processing by MSPC.

Figure 4 also shows accuracy of the decision path in terms

of true positive and false positive rates.

Figure 5(a) shows power consumption of the template

matching architecture. We recall that when a larger num-

ber of false positives can be tolerated, smaller number of

template bins is needed for signal screening, resulting in

consuming less power by the screening blocks. The reason

is that with a high false positive, each individual bin bk can

interpret more non-target actions as being weakly correlated

with the target action. Therefore, less bins are needed to form

a complete ordering (see Definition 4). In our experiments,

we observed that with 20% false positive rate, two template

bins (see fourth column in Table III) were detected by our

greedy algorithm to be on the decision path. However, only

one template bin was active when a 50% false positive rate is

considered. We note, however, that higher false positives will

result in more actions being processed by the main processor

which results in overall higher power consumption of the

entire system due to significantly higher power consumed by

the microcontroller. Furthermore, the number of active bins

is fixed (i.e. 2 for FP=0.2 & 1 for FP=0.5) when the number

of bins grows. Therefore, the amount of power consumption

reduces as the number of bins increases (see Figure 5(a))

because the individual bins get smaller. This confirms our

intuition that only a small fraction of the template can be

used for signal screening. Overall, the amount of power

consumption ranges from 6.58 nW for K = 2 (two template

bins) with 20% false positive, to 0.23 nW for K = 30 with

50% false positive rate.

We also compared the power consumption of the decision

paths (multiple screening blocks with mini-templates) with

that of a full template (i.e. 6.58 nW) to highlight the

amount of extra power reduction made by the mini-template

structure. Figure 5(b) shows percentage of improvement in

power optimization achieved by our optimization problem

(as proposed in Section V). We note that if the full template

is divided into small number of bins (e.g. K = 2) most

Table IV
POWER SAVING

W/o Screening W/ Screening

FP=0.2

Processor Activation 100% 29%
Power (Processor) 3 mW 0.87 mW
Screening Activation - 100%
Power (Screening) - 1.87 nW
Power Saving - 71%

FP=0.5

Processor Activation 100% 56%
Power (Processor) 3 mW 1.68 mW
Screening Activation - 100%
Power (Screening) - 0.93 nW
Power Saving - 44%

of the bins might be on the decision path, which results

in small improvement. Therefore, it is important to divide

the template into a sufficiently large number of bins (K)

and find only a small number of bins (R) for screening as

suggested by the Min Size Mini-Template Set problem. In

our experiments, a ratio of 10% between length of mini-

templates and length of full-template (e.g. 30 and 300 for

’Sit to Stand’) leaves sufficient information within each

mini-template for classification. Therefore, the number of

bins can be set to satisfy this requirement. As suggested in

Figure 5(b), we obtained an average improvement of 78.7%

with mini-templates for detecting ‘Sit to Stand’.

The power consumption of the proposed screening classi-

fier was compared with that of an MSP430 microcontroller

which consumes 3 mW in active mode. Table IV shows

overall power consumption of both screening blocks and

main processor (where main signal processing is running)

as well as the amount of power savings obtained due to

using screening blocks. In particular, 71% power saving

was achieved when only 20% of the non-target actions are

accepted by the screening blocks (FP=0.2). The amount

of power savings that can be achieved by our screening

approach highly depends on the frequency of occurrence

of the target action. For our experiments, we assumed that

all actions are equally likely, and therefore, ’Sit to Stand’

occurs 11% of the times. In reality, however, human actions

are sparse occurring a lot more infrequently, which results

in much higher power savings.

C. Per-Action Screening

In order to measure the power consumption of our sys-

tem for screening individual actions listed in Table II, we

consider each action as target, and find minimum number of

mini-templates needed for screening that particular action.

The value of acceptance/rejection threshold (see Defini-

tion 3) was set to guarantee a maximum false positive rate of

20%. We repeated this test for different values of K (number

of template bins) only including 10, 20, and 30 which

the decision path was detected by the greedy algorithm.

Figure 6(a) shows the total power consumption of the active

screening blocks, which ranges from 0.23 nW to 1.45 nW

with an average of 0.85 nW over all the experiments. The
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Figure 5. Power consumption of screening blocks (a), improvement in power reduction obtained by mini-templates (b), while Z-axis accelerometer of
‘Waist’ node is used for screening ‘Sit to Stand’ movements.

� � � 
 � 	 ( � 0
�/�

�/


�/	

�/�

�

�/�

�/


�/	

"�����

,
�


��
�#�

-
%

)+���.��
)+���.��
)+���.��

(a) Power Consumption

� � � 
 � 	 ( � 0
(�

��

��

0�

0�

���

"�����

,
�


��
��
��

 �
���
��
#1

%
)+���.��
)+���.��
)+���.��
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Figure 6. Power consumption of screening blocks (a), and improvement over full size template architecture (b), upper bound on false positive rate is set
to be 20%.

small power consumption for detecting action 3 (‘Bend to

Grasp’) compared to other actions can be interpreted as

follows. The sensor node used for screening ‘Bend to Grasp’

actions is ‘Right Wrist’ which has significantly different

pattern during this action compared to other actions. Thus, a

smaller number of bins (shorter decision path) is enough to

perform preliminary signal screening. In contrast, a ‘Waist’

node, for example, may experience similar patterns during

‘Sit to Stand’ and ’Rise from Kneeling’, and therefore,

more screening blocks are required to reliably accept/reject

the incoming actions. Figure 6(b) shows percentage of

improvement in power consumption of the screening blocks,

over a full template screening block, made by the optimiza-

tion problem. Improvements range from 77.9% for ’Turn

Clockwise’ action with 10 template bins to 96.6% for ’Bend

to Grasp’ action with 30 bins. The average improvement

achieved was 87.0%. Furthermore, the amount of energy

saving obtained with this experiment was 71.1%.

D. Accuracy
In order to measure accuracy of the optimal mini-template

set in classifying a target action, we used only the mini-

templates determined by our greedy optimization algorithm

while an incoming signal is accepted if it is accepted by all

screening blocks. Our goal was to estimate sensitivity of the

template matching architecture while acceptance threshold

is already set during training. This test resulted in a true

positive rate of 93.3% on average.

VII. DISCUSSION AND FUTURE WORK

We used cross-correlation scores to perform preliminary

low power signal processing by quantifying similarity be-

tween incoming signals and target action. This approach
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is promising and allows for significant power saving while

achieving acceptable true positive rates (e.g. 93.3%). Higher

power savings can be obtained in the expense of increase in

false positive rates. In order to maintain smaller false positive

rates, more complicated computing blocks (as alternatives

for cross-correlation) can be used. Clearly, there are tradeoffs

between complexity of screening blocks and desired false

positive rates. Currently, we are investigating alternative sim-

ilarity measures for cross-correlation, and studying different

system design tradeoffs.

In our experiments, we assumed that experimental actions

occur continuously and at equal frequencies. In reality,

however, human actions can be sparse, occurring at signif-

icantly lower rates. This will allow for activating the main

processing less frequently, and therefore, saving more power.

Our work on designing granular decision making archi-

tectures for wearable platforms is ongoing. We are currently

investigating refinement of the template matching blocks for

further optimization with respect to other tunable parameters

such as bit resolution of sensor readings and duration of

incoming actions. We are also exploring this approach in

the frequency domain.

VIII. CONCLUSION

In this paper, we proposed an ultra low power sig-

nal screening methodology for power optimization in

lightweight embedded systems and demonstrated the effec-

tiveness of our approach for energy saving in healthcare

domain as an example of cyber physical systems. Our signal

screening model operates based on a series of template

matching blocks. Each screening module is associated with a

small portion of a predefined template, called mini-template.

Our signal screening approach rejects actions that are un-

likely to be the target action and activates the main processor

only if the incoming signal is highly correlated with the tem-

plate and is likely a target action. The proposed hardware-

assisted algorithm can be used to significantly reduce energy

consumption of wearable sensory platforms such as those

used in healthcare applications. Our experimental results

demonstrate the effectiveness of the proposed architecture in

reducing the power consumption of the system. In particular,

we achieved energy savings of more than 70% for screening

different transitional movements involved in our daily lives.
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