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Automatic Segmentation and Recognition in Body Sensor Networks
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One important application of body sensor networks is action recognition. Action recognition often implicitly
requires partitioning sensor data into intervals, then labeling the partitions according to the action that
each represents or as a non-action. The temporal partitioning stage is called segmentation, and the labeling
is called classification. While many effective methods exist for classification, segmentation remains prob-
lematic. We present a technique inspired by continuous speech recognition that combines segmentation and
classification using hidden Markov models. This technique is distributed across several sensor nodes. We
show the results of this technique and the bandwidth savings over full data transmission.
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1. INTRODUCTION

The capabilities of small electronic devices have been increasing exponentially as their
sizes and prices have dropped. Uses that may have seemed frivolous or expensive are
becoming practical and even cheap. For instance, cell phones can now record videos
and images and transmit them wirelessly to personal websites in real time, and cars
can automatically notify paramedics of a crash. One exciting platform with similar
potential is the body sensor network (BSN) in which several intelligent sensing de-
vices are placed on the human body and can perform collaborative sensing and signal
processing for various applications.

Currently, these sensing devices are large enough that they are too cumbersome
for casual use. However, the threshold for wearability depends on the application. For
instance, stride variability is associated with the occurrence of Alzheimer’s [Hausdorff
et al. 1998; Sheridan et al. 2003]. If a patient could wear a sensor on his leg that could
help a doctor evaluate the effectiveness of medication in a naturalistic setting, the
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inconvenience might be worth it. Further, these devices are getting smaller and more
powerful every year, so wearability is unlikely to remain a long-term problem.

Therefore, now is the time to investigate applications so that hardware designers
can optimize their devices for more useful applications. One use of BSNs is action
recognition in which the actions of the person wearing the sensors are identified. This
has several applications. For instance, techniques exist for extracting stride variabil-
ity, but the output is only correct if the person is walking [Aminian et al. 2002]. Also,
action recognition could be used to develop an activity log for a person to help him or
doctors assess health [Choudhury et al. 2008; Nait-Charif and McKenna 2004; Ouchi
et al. 2004] or avoid dangerous actions, which might be useful for RSI sufferers. Action
recognition could even be used to help provide contextual interfaces to other devices
[Castelli et al. 2007].

Recognition is a two-step process: (1) locate temporal regions that contain a single
action, and (2) recognize the action. Both these problems are well studied for image
and motion capture systems. However, many of these techniques are dependent on
spatial information provided by these systems and are not appropriate to resource-
constrained environments. This has led BSN researchers to adapt techniques from
more basic pattern-recognition approaches and from speech recognition. Much of the
work in the BSN community has focused on the recognition portion, while segmenta-
tion in BSN recognition is still largely an open problem. Popular approaches include
segmenting on fixed time slices, manual segmentation, and exhaustive search. Fixed
time slices may capture multiple movements or only part of movements, manual
segmentation is impractical for a deployed system, and exhaustive techniques are
resource intensive.

In previous work, we looked at segmentation using an efficient energy-based ap-
proach [Guenterberg et al. 2009]. We found that the method was effective for actions
separated by rests. However, in a non-lab setting, actions often occur in rapid succes-
sion with no rest between them. This problem is called continuous action recognition
and is addressed by applying a hidden Markov model (HMM)-based approach adapted
from the speech recognition community. The HMM can both segment and recognize
simultaneously. The novelty of our work is a system which (a) provides continuous
action recognition from inertial sensor data, (b) uses unsupervised clustering on a
per-node basis to reduce the communication from each node, and (c) provides postu-
ral information to eliminate impossible actions (e.g., walking from a sitting position).
The hidden Markov model allows full signal segmentation of continuous actions with
a low computational-order algorithm. To the best of our knowledge, this capability
is not addressed in the literature. Since the sole goal of segmentation is to facilitate
recognition, the quality of segmentation will be judged entirely by presenting recogni-
tion accuracy. Further, the results will be compared to k-NN classifier provided with
manual segmentation as a conceptual upper bound.

2. RELATED WORK

Several approaches to action recognition have been proposed. A common problem is not
the recognition but the segmentation of data into actions. Often in image recognition
this is done without specific knowledge of what the image contains, but for action
recognition using inertial sensors, it is generally not possible to infer a segmentation
without some knowledge of what is being segmented. Various approaches address this
problem in different ways.

Ward et al. recognized several workshop activities, such as taking wood out of a
drawer, putting it into the vice, getting out a hammer, and more. They avoided the
problem of segmenting accelerometer data by segmenting the data using the presence
or absence of sound and then identified the action using accelerometer data and an
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HMM classifier [Ward et al. 2006]. Their results showed the effectiveness of this tech-
nique for a shop, but in many other situations, actions are not correlated with sounds.

Another approach used a k-NN classifier and several statistical features to classify
actions using a minimum number of sensor nodes [Ghasemzadeh et al. 2008]. Manual
segmentation was used to avoid introducing errors from segmentation. This is a good
technique for isolating the performance of various parts of a system, but for a deployed
system, a satisfactory segmentation scheme is necessary.

Alternatively, it is possible to try a number of segmentations and choose the best. Lv
and Nevatia [2006] use 3-D motion capture data. Given a start and end time, each joint
uses an HMM to identify the action. AdaBoost is then used to make a global decision
using the HMMs as weak classifiers. A dynamic programming algorithm chooses the
best segmentation according to their maximum-likelihood function in O(T3) time. This
scheme performs well if all computation is done on a single machine, but when each
HMM is employed on a separate sensor node, the communication overhead required to
try the different segmentations is quite high.

Several authors classify fixed-size segments independently of each other [Bao and
Intille 2004]. This can result in outliers and discontinuities. Many methods involve
some sort of smoothing function [Bao 2003; Courses et al. 2008; Van Laerhoven and
Gellersen 2004]. One such method uses AdaBoost to enhance several single-feature
weak classifiers. An HMM uses the confidence output of the AdaBoost classifier as
input. A separate HMM is trained for each action class, and the overall segmen-
tation/classification is chosen based on the maximum likelihood among the various
HMMs [Lester et al. 2005].

This is somewhat similar to our approach, except our model is based on a single
HMM, which allows us to rule out impossible sequences of actions and to avoid out-
liers that could result from one model temporarily having higher probability than the
others. The main contribution of our algorithm is efficiently producing a segmentation
and classification and performing this processing on a distributed platform.

Quwaider and Biswas [2008] divide actions, which they refer to as postures, based
on the activity level measured with accelerometers. With high-activity postures, such
as running, the postures are identified based on the energy level on each limb. For
relatively quiet postures, such as sitting and standing, they employ a hidden Markov
model used on radio signal strength (RSSI) differences between sensor nodes. With
this, they can differentiate between sitting and standing postures. Our technique also
identifies postures as key to recognizing actions, but we use an inertial sensor ap-
proach to achieve recognition and explicitly model actions as sequences of motions.
This allows us to differentiate between actions that are different but may have a simi-
lar level of activity, such as turning counter clockwise and turning clockwise.

Another HMM-based segmentation technique from our research group subdivides a
single action [Guenterberg et al. 2009]. This method is able to find the time of certain
key events within a known and possibly repeating action but is unable to determine
the action. The present article describes a method for segmenting and identifying
actions from a stream of sensor data. Therefore, these works are complementary but
different in terms of both goals and methods. The method described in Guenterberg
et al. [2009] is based on a left-right HMM and is able to determine the time when
certain events occur within an action, such as heel touch and toe raise during walking.
While both that work and the present work rely on HMMs to process inertial data of
human movement, the present work uses a unique state structure built from posture
states and independently trained left-right models for each movement. Further, we
introduce the concept of a node-level unsupervised clustering technique, called motion
transcripts, to reduce communication load and model order. Finally, this work uses
data from multiple sensor nodes for most action recognition problems, while the
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Fig. 1. Sensor placement.

Fig. 2. Sensor node.

previous work was aimed at data from a single sensor location (even though the
possibility of multiple locations was explored).

3. DATA COLLECTION HARDWARE

This article presents a scenario in which the actions a subject performs are identified
from continuous data provided by a BSN. The sensor nodes are embedded comput-
ing and sensing platforms with inertial sensors, wireless communication capability, a
battery, and limited processing capabilities. Sensor nodes must be placed at multiple
locations on the body to capture sufficient information to accurately determine the ac-
tion. For instance, the action placing something on a shelf and standing still produce
similar sensor data on the leg but different data on the arms, while turning to look
behind and turn 90◦ show similarities from the shoulder but differences from the legs.
The nodes communicate with a base station where a final conclusion is reached.

3.1. Sensing Hardware and Body Placement

Figure 2 shows one of the sensor nodes used to collect data for this article. The sen-
sor nodes use the commercially available TelosB mote with a custom-designed sensor
board and are powered by two AA batteries. The processor is a 16-bit, 4 MHz TI
MSP430. The sensor board includes a tri-axial accelerometer and a bi-axial gyroscope.
Data is collected from each sensor at 20 Hz. This frequency was chosen empirically as
a compromise between sampling rate and packet loss.

The sensor nodes are placed on the body, as shown in Figure 1. Placement was cho-
sen so that each major body segment is monitored with a sensor. While we expect that
nodes placed at a subset of these locations would be sufficient for accurate classification
of all considered actions, no formal procedure was performed to select such a reduced
set. Discovering such procedures could prove to be a fertile area for future research.

3.2. Constraints and Deployment Architecture

The goal of this research was to find a computationally realistic algorithm for segment-
ing and classifying actions. Actually implementing this technique on sensor nodes is
the subject of future research. To this end, data collected on each sensor node was
broadcast to a base station and recorded for later processing in the MATLAB envi-
ronment. This gave us the most flexibility for developing and testing different signal
processing and classification schemes.

The algorithms presented here assume the following deployment architecture: the
sensor nodes are placed on the body, as shown in Figure 1. Each can communicate
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Table I. Actions Captured

Initial Final
ID Posture Action Posture

1 Stand Stand to Sit (Armchair) Sit
2 Sit Sit to Stand (Armchair) Stand
3 Stand Stand to Sit (Dining Chair) Sit
4 Sit Sit to Stand (Dining Chair) Stand
5 Sit Sit to Lie Lie
6 Lie Lie to Sit Sit
7 Stand Bend and Grasp from Ground (R Hand) Stand
8 Stand Bend and Grasp from Ground (L Hand) Stand
9 Stand Bend and Grasp from Coffee Table (R Hand) Stand

10 Stand Bend and Grasp from Coffee Table (L Hand) Stand
11a Stand Turn Clockwise 90◦ Stand
11b Stand Return from 11a Stand
12a Stand Turn Counterclockwise 90◦ Stand
12b Stand Return from 12a Stand

13 Stand Look Back Clockwise and Return Stand
14 Stand Look Back Counterclockwise and Return Stand

15a Stand Kneeling (R Leg First) Kneel
15b Kneel Return from 15a Stand
16a Stand Kneeling (L Leg First) Kneel
16b Kneel Return from 16a Stand
17a Stand Move Forward 1 Step (R leg) Stand
17b Stand Move L Leg beside R Leg Stand
18a Stand Move Forward 1 Step (L Leg) Stand
18b Stand Move R Leg beside L Leg Stand
19a Stand Reach up to Cabinet (R Hand) Stand
19b Stand Return from 19a Stand
20a Stand Reach up to Cabinet (L Hand) Stand
20b Stand Return from 20a Stand
21a Stand Reach up to Cabinet (Both Hands) Stand
21b Stand Return from 21a Stand

22 Stand Grasp an Object (1 Hand), Turn 90◦ and Release Stand
23 Stand Grasp an Object (Both Hands), Turn 90◦ and Release Stand
24 Stand Turn Clockwise 360◦ Stand
25 Stand Turn Counterclockwise 360◦ Stand

directly with the base station. The nodes have a limited power supply and must last
a long time between recharges, so power must be conserved. The base station is a cell
phone or PDA that has greater processing capabilities and can use significantly more
power. Wherever the final classification occurs, it must be transmitted to the base
station for storage or long-range communication.

Communication uses significantly more power than processing [Akyildiz et al. 2002;
Polastre et al. 2005], so limiting communication is key to conserving power. Also, while
the base station is more powerful than a sensor node, it is not as powerful as desktop
computers, so algorithms designed to run on the base station should be of low compu-
tational order.

3.3. Actions Collected

The actions considered are mostly transitional actions. Each starts and ends with a
posture. The actions are shown in Table I. Not all postures sharing the same label are
exactly the same. For instance, for stand at the end of actions 19a, 20a, and 21a, one
or both hands are on a shelf, whereas for most other cases stand means standing with
hands resting at the side. The probabilistic nature of HMMs allows both postures to
be represented by the same state.
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The actions were collected from three subjects who each performed the action ten
times. These actions were manually segmented to label the start and the end of each
action. This manual segmentation is used to create sequences of known actions to
train the model and represents the ground truth. These are referred to as canoni-
cal annotations. The data is divided into a training set and a testing set, with ap-
proximately half the trials used for training and half for testing. The testing data
has also been manually annotated to allow for comparison between the segmentation
and labeling automatically generated by our system and the ground truth (manual
segmentation).

4. CLASSIFICATION MODEL

One of the most difficult problems in classification is trying to label all the actions in
a continuous stream of data in which both the timing of actions and the labels are
unknown. This problem has been considered many times in speech recognition and
is called continuous speech recognition [Rabiner and Juang 1986]. The problem of
speech recognition is similar enough to action recognition that many techniques used
for speech recognition can be applied with appropriate modifications to action recog-
nition tasks. Jurafsky et al. [2000] present a model based on hidden Markov models
(HMMs) where each word is represented by a separate left-right HMM.1 These are
combined into a single HMM by creating a null state which generates no output. Each
word starts from this null state and ends on the null state. A very similar approach is
used for gesture recognition from hand sensors in Lee and Kim [1999].

We took this model and adapted it to fit within the constraints imposed by our
BSN configuration and to more effectively solve the problem of action recognition. One
particular change is that each action is assumed to start with some posture such as
kneeling or standing and end with a posture. The postures are not null states, that is,
there is an output associated with a posture, and a posture may persist for a period of
time. The input for this system is a subject performing movements. These movements
can be in an arbitrary order. The output is a segmentation and a set of labels for each
segment.

4.1. Overview

Classification requires a number of signal processing steps that execute on the sensor
nodes and the base station, as shown in Figure 3(a). The system is designed to accu-
rately classify actions with limited communication and use of processing power. The
data is processed on a moving window centered on the current sample. The window
moves forward one sample at a time.

(1) Sensor Data. Data from five sensors is collected. The accelerometer senses three
axes of acceleration: ax, ay, and az. The gyroscope senses angular velocity in two
axes: θ and φ. There is no angular velocity from the axis orthogonal to the plane of
the sensor board.

(2) Feature Extraction. For each sample time, a feature vector is generated. The fol-
lowing features are extracted from a five-sample window for each sensor: mean,
standard deviation, rms, first derivative, and second derivative.

1Hidden Markov models assume a process starting in a state which, at each discrete time, generates an
output and then transitions to a new state. The state transition and output are probabilistic and based
exclusively on the current state. The output can be observed but not the state. Algorithms exist to train
a model to a given set of output sequences and to infer the state sequence given an output sequence and
model. A left-right model restricts transitions to self transitions or the next state in sequence. See Rabiner
and Juang [1986] for more information.
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Fig. 3. Signal processing and recognition models for continuous action recognition.

(3) Transcript Generation. Instead of transmitting the feature vector to the base
station, each sensor node labels a sample using a single character from a small
alphabet. Each sensor has a unique alphabet with between two to nine characters.
Characters often repeat for several samples allowing for significant compression.
The sequence of labels produced are motion transcripts. Transcript generation uses
Gaussian mixture models (GMM) to label samples based on clusters generated
from the training data.

(4) Hidden Markov Model. The HMM uses the model shown in Figure 3(b). In
the middle are actions which are modeled as left-right HMMs with between
Mw = 1, 2, · · · , 10 states. The postures on the left and right are each modeled
using a single state. The duplicated postures represent the same state. Postures
and actions are connected as shown to form a single HMM.

(5) Generating Output. When trying to segment and classify data, the Viterbi algo-
rithm [Rabiner and Juang 1986] is used to find the most likely state sequence
for the given output. The Viterbi is used because it finds the optimal sequence
efficiently. Each sample is labeled with the name of the action or posture of the
associated state. This output is the generated annotations.

4.2. Transcript Generation

Reducing data before transmission can save considerable power in a BSN. Transcripts
do this by reducing the multidimensional per-sample observations on a sensor node to
a single character taken from a small alphabet. Transcripts are inspired by the idea
that actions can be represented by a sequence of motions. Motions can be identified
from a small interval of observations. A single motion or position is likely to persist
for some time, allowing run-length encoding to further reduce transmitted data.

We have no canonical list of motions; therefore, a technique is needed that does not
require human input. One solution is unsupervised clustering which automatically
groups points based on underlying patterns in the data. Once these groups are created
from training data, later observations may be assigned to one of the existing groups.
In our system, the points are feature vectors in F-dimensional space.

The most common clustering techniques include hierarchical clustering [Johnson
1967], k-means clustering [Hartigan and Wong 1979], and model-based clustering
[Figueiredo and Jain 2002; Fraley and Raftery 1998]. Model-based clustering assumes
that all points have been generated from a set of distributions. The Gaussian mixture
model (GMM) is a model-based clustering using Gaussian distributions. Many real-
istic processes actually generate output based on Gaussian distributions, and many
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more can be approximated by a small number of Gaussian distributions. This causes
GMMs to often outperform other methods of clustering [Fraley and Raftery 1998]. For
these reasons, GMMs are used for transcript generation. We assume a diagonal covari-
ance matrix to reduce computational complexity for labeling and to alleviate errors in
estimation due to the small sample size problem [Raudys and Jain 1991].

There is an independent transcript, Ti, for every node. Each frame of data from
the node can be labeled with one of the Ci symbols, each of which is represented by a
GMM, λ j. λ j has Mj Gaussian distributions. As shown in Equation (1), each mixture
is represented by three parameters, that is, the mixing parameters p, which represent
the prior probability of the distribution generating a given point. μ and � are the
Gaussian mean and covariance matrices.

λ =
{

(p1, μ1, �1) , · · · ,
(
pMj, μMj, �Mj

) }
. (1)

The probability that a given observation x was generated by the mixture λ j is

p(x|λ) =
Mj∑
i=1

pi p(x|μi, �i). (2)

Training a set of clusters involves choosing clusters which best model the training
data while having a low enough order to avoid overfitting to the training set at the
expense of good generalization. The maximum likelihood (ML) criterion for the best
cluster model for a given set of observed points x ∈ X is

λmax = arg
λCimax

λ=λ1

P(X |λ) = arg
λCimax

λ=λ1

T∏
t=1

p(xt|λ). (3)

This cannot be analytically calculated, so frequently, the expectation maximization
(EM) procedure is used [Figueiredo and Jain 2002; Reynolds and Rose 1995]. This
iteratively converges to a locally optimal clustering. EM starts with an initial solution
then iteratitively improves the solution with the following steps.

(1) Expectation. For each point and mixture component, calculate the probability that
the point was generated by the component’s distribution.

(2) Maximize. Update the model parameters to maximize the likelihood function using
the membership probabilities calculated in the preceding expectation step.

The initial model and the choice of the number of mixtures (M) affect the final qual-
ity of the clusters. A common method of choosing M is to use EM to train several
models using different values of M and starting distributions. Then the models can
be compared using some measure, and the best is selected. We use the Bayesian in-
formation criterion to compare models [Fraley and Raftery 1998]. The clustering is
performed independently on each node, and each node may have a different number of
clusters.

4.2.1. Assigning New Observations to Clusters. Transcripts for an observed action are
generated by assigning each sample to a single cluster. These cluster assignments are
used to label each sample, resulting in a string from a finite alphabet representing the
motion, as observed from a single sensor node. Using Equation (4), a feature vector for
a given sample is assigned the cluster most likely to have generated it.

c(x) = arg
M

max
i=1

pi p(x|μi, �i). (4)
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4.2.2. Implementation on Sensor Nodes. Cluster assignment in a deployed system will
run on a sensor node, so efficiency is very important. One way to achieve this is to
use log probabilities to assign the clusters. Specifically, by extending Equation (4), the
following relationship is achieved.

c(x) = arg
M

max
i=1

pi p(x|μi, �i) (5)

= arg
M

max
i=1

[
log |pi| + log

∣∣p(x|μi, �i)
∣∣] (6)

= arg
M

max
i=1

[
log |pi| + log |a| − 1

2

F∑
k=1

(xik − μik)2

σ 2
ik

]
. (7)

Equation (6) follows from the logarithmic function being monotonic and strictly
increasing. The expansion of the log Gaussian probability in Equation (7) as a
summation is the consequence of using a diagonal covariance matrix. The variable
a = 1

2π F/2|�|1/2 and represents the normalization factor of the distribution.
Furthermore, given the lack of a floating point unit on most sensor node hardware,

calculations should be done with fixed point arithmetic.

4.3. Hidden Markov Model

After each sensor node assigns a character to each sample, the actions can be deter-
mined on the base station using the HMM shown in Figure 3(b).

4.3.1. Training the Model. An HMM has M states and is defined by the model λ, con-
sisting of three sets of probabilities.

λ = {πi, aij, bj (k)}. (8)

The probability that a sequence begins with state si is πi. The transition probability aij
is the probability that a state transitions to state sj after starting on state si. For dis-
crete observations, b j(k) gives the probability that observation vk is emitted at state sj.

For our system, the left-right model for each action and posture is trained indepen-
dently, then all actions and postures are joined to form a single HMM. The model for
each action is trained by starting with an initial model and iteratively improving it
using the Baum-Welch procedure [Rabiner and Juang 1986]. The Baum-Welch proce-
dure finds a local minimum. By trying a number of variations and selecting the best
model according to some measure, the likelihood of finding a global minimum is in-
creased. As with GMMs, a common technique for model selection is BIC [Biem 2003;
Stoica and Selen 2004]. We try Mw ∈ 1, 2, · · · , 10. For each of these fixed-state models,
we start by dividing samples in each sequence evenly among states, then iterating the
EM algorithm five times to converge the model. For the next nine tries for the current
Mw, each state is initially assigned a random number of samples. The best of these
100 models is used to represent the action.

Each component of the HMM model in Equation (8) must be trained. Since the
action must start at the first state, m1,

πi =
{

1 if i = 1
0 otherwise.

(9)

aij and bj (k) are trained using the Baum-Welch algorithm, as described in Rabiner
and Juang [1986]. The Baum-Welch algorithm is another EM algorithm. At each step,
the state sequence probabilities are computed, and this is used to update aij and bj (k)
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based on the expected transitions and observations corresponding to each state, as
seen in Equations (10) and (11).

aij =
E

[
number of transitions from si to sj

]
E

[
number of transitions from si

] . (10)

b ( f )
j (k) =

E
[
number of times in sj and observed symbol vk

]
E

[
number of times in sj

] . (11)

The observation probabilities for each sensor node are considered independent of
other nodes f . This means that b ( f )(k) j is computed for each sensor node separately,
and the overall observation probability is.

bj (k) = Mw

√∏
f∈F

b( f )
j (k). (12)

In speech recognition, a scaling factor, called the language model scaling factor (LMSF)
is used to compensate for an incorrect assumption of independence [Wessel et al. 1998]
between observations. We adapt this concept by taking the Mwth root of the observa-
tion probabilities.

Right after the action finishes, it is expected to immediately transition to the pro-
ceeding posture. Therefore, during training, only state sequences ending in the final
state, sMw

should be considered. This can be accomplished simply if the observation
probability takes the sample number into account and makes the probability 0 for all
observations from a state other than the final state for the final observation in a given
sequence.

b ′
j (k, t) =

{
0 if j �= Mw and t = T
bj (k) otherwise.

(13)

4.3.2. Bayesian Information Criterion. Selecting the best among several models is a com-
mon problem in statistical pattern recognition. In general, a model with a greater
number of parameters will better fit any set of training data but runs the risk of fitting
eccentricities in the training data not present in the test data. The Bayesian informa-
tion criterion [Biem 2003] is a method that only requires training data and has strong
probabilistic properties.

BIC(λ) = log p
(
X |λ, θ̂

) − α
K
2

log T. (14)

For HMMs, p(X |λ, θ̂) can be computed in a straightforward manner, as given in
Rabiner and Juang [1986]. T is the total number of samples in the training set, and
α is a regularizing term that allows for control over the overfitting penalty. We chose
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a value of α = 0.05 in which each action was represented with an average of three
states. K, the number of free parameters, is

K = 2(M − 1) + M
nnodes∑
i=1

ci − 1. (15)

M is the total number of states, and ci is the number of clusters on the given sensor
node. The first term represents the number of transition probabilities, and the second
the number of emission probabilities.

4.4. Joining Models

The models for each action are joined into a single HMM. Posture self-transition prob-
abilities are derived from the training data, while the probability of transition from a
posture to all associated actions are considered to be equal probability.

4.5. Sequence Extraction for Classification

After the model is fully deployed, it will be deployed on a BSN. The clustering operates
on individual nodes, and the cluster sequences are transmitted to the base station,
where the HMM is used to segment and classify the actions. For this, the most likely
state sequence is extracted using the Viterbi algorithm [Rabiner and Juang 1986]. The
states in the sequence are grouped by action; the individual state progression within
an action is considered unimportant. The model dictates that each occurrence of an
action is separated by at least one posture state. This means that even if an action
were to repeat many times, the number of repetitions can be easily counted.

4.6. Runtime Order and Comparison to Other Methods

At runtime, there are two primary stages: transcript generation and HMM-based
recognition. For transcripts, the probability that the feature vector at each sample was
generated by each cluster is calculated. The sample receives the label of the highest
probability cluster. Because a diagonal covariance matrix is used, calculating proba-
bilities is a linear function of the number of features.

O(Clustering) = O(T · F · Ci), (16)

where T is the number of samples considered, F is the number of features in the
feature vector, and Ci is the number of clusters on sensor node i.

The HMM uses the Viterbi algorithm [Rabiner and Juang 1986] for classification
and segmentation. Since the HMM consists of several joined left-right models, the
simplified Viterbi runs more efficiently.

O(Classifier) = O(T · 2Ma · K). (17)

In Equation (17), the total number of action states is Ma, and K is the number of sensor
nodes.

This method must be compared to other methods that segment and classify data
and cannot be compared with methods that rely on external data to segment the data.
The method in Lv and Nevatia [2006] is O(T3) and so has a lower runtime efficiency:
the approach is not designed for sensor networks and thus implies a large number of
transmissions. Yang et al. [2009] propose a system that can be either used on fixed
segments or can adaptively choose a segmentation. Both are linear with respect to the
number of samples, however, there are large constant factors, such as the number of
length hypotheses, and repeated computation of an inverse matrix for each hypothesis.

Finally, there are a number of methods based on fixed segmentation. These also can
do no better than linear time. However, the associated constant factors may be smaller
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Table II. Results for All Subjects Trained on One Model

Subject k-NN Full Samples Accuracy Clustering Accuracy
1 96.5 78.1% 92.6%
2 93.2 38.1% 82.6%
3 99.4 10.9% 83.2%

than for our model. These methods do not take temporal characteristics into account,
so actions that use the same motions for a portion of time will be indistinguishable,
even if the sequence is unique for each action.

5. RESULTS

For our experiment, three subjects performed the actions listed in Table I using the
body sensor configuration in Section 3. The system was trained using approximately
half the data. An action is considered properly labeled if over 50% of the action was
labeled as the action and the rest was labeled as either the start or the end posture. If
any part of an action was labeled as a different action, then the action is considered to
be incorrectly labeled.

5.1. Comparison to Other Methods

The advantage of the classification technique developed in this article is the ability to
both segment and classify data. In this section, the accuracy of our method is explored.
However, it is useful to compare this with other techniques. First, we look at the
accuracy when using k-NN classification with manually performed segmentation, as
proposed in Ghasemzadeh et al. [2008]. The implementation uses data fusion to make
a decision based on a full feature vector containing data from each node instead of the
decision fusion technique outlined. Because the k-NN test uses manual segmentation
and features extracted from all the data instead of from the transcripts, the k-NN
results represent a conceptual upper bound on the accuracy.

The second method we choose for comparison is the HMM outlined in this article,
but using features linearly quantized into nine levels. This has the potential for higher
accuracy than clustering, since clustering potentially discards useful information. For
our results, this method resulted in considerably higher error, probably due to a com-
bination of overfitting, over-simple quantization, and lack of a feature-selection tech-
nique. The need for feature selection is especially likely, as there are only five training
trials for each subject and over 20 features, some of which may be fairly useless or
highly correlated with other features.

5.2. Classification Accuracy

Table II shows the result for each subject when a single model was trained on all
subjects. With clustering, accuracy for each subject is reasonable, especially given the
similarity of the movements. As expected, k-NN on an ideal (human-generated) seg-
mentation outperforms the HMM. The lower accuracy of the HMM is compensated by
significantly less required data transmission, as well as the automatic segmentation
provided by the HMM.

Visual inspection of the transcripts shows consistency within subjects but marked
differences between subjects for the same movements. This is expected because of
the differences in the way subjects perform movements, that is, everybody sits down
on the bed slightly differently. Subject 1 exhibited much higher intertrial consistency
than the other two subjects, leading to Subject 1 dominating the trained model. This
is the reason for Subject 1 having 10% higher accuracy than the other two subjects.
By independently training the model on a per-subject basis, the bias towards a
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Table III. Results for All Subjects Trained Individually

Subject k-NN Full Samples Accuracy Clustering Accuracy
1 97.5 95.1% 90%
2 91.5 48.9% 94%
3 99.4 47.4% 94%

particularly consistent subject can be eliminated. The results of this approach are
shown in Table III. The improvements for Subjects 2 and 3 are considerable, while the
accuracy of Subject 1 actually dropped. A clue to this drop can be found in the training
accuracy: Subject 1 has 100% accuracy over the training set. This is a symptom of
overfitting. The classic solution to overfitting is increasing the number and variation
of training trials. Subject 1’s consistency is the primary reason that the subject had
an overfitting problem sooner than the other subjects. The biggest disadvantage in
this approach compared with training one model for all subjects is the requirement of
more training data for each subject.

Once again, clustering outperforms full use of all samples but generally fails to beat
k-NN, although the HMM with clustering approach produced the best results of any of
the approaches for Subject 2.

Detailed results for Subject 1, as displayed in Table III, are shown in Table IV. Of
special interest is the confusion column. Some of the misclassifications are expected.
For instance, picking an object off the ground and off a coffee table are very similar, and
so the confusion of Actions 10 and 8 make sense. Similarly, turning counterclockwise
90◦ is quite similar to returning from a clockwise turn. However, the confusion of
reaching up to a cabinet with left hand and move forward one step makes little sense
and so represents a true error.

A visual representation of the segmentation and classification process for Subject 1
is shown in Figure 4(a), and for the same movement with Subject 3 in Figure 4(b). The
clusters are on the bottom. The labels in red are the canonical annotations (ground
truth), while the ones above in blue are generated annotations (system output). The
grayscale bar at the top represents the progression of states. Movements 11a and 11b
are turn counterclockwise 90◦ and return, respectively. Movements 12a and 12b are
turn clockwise 90◦ and return, respectively. The clusters from the left thigh show a
very consistent pattern, while the clusters from the waist and right arm show signif-
icant variation. The HMM is able to accurately identify these actions from among all
possible actions, as can be seen from the labeling at the top. Sometimes Subject 1
misidentifies a clockwise turn as the return from a counterclockwise turn, which is not
necessarily even a mistake: the two may be impossible to distinguish even for a per-
son. The transcripts for each subject are markedly different, even though both come
from the same action. These figures give clear motivation to prepare separate models
for each subject.

5.3. Bandwidth Savings from Clustering

The primary reason for choosing clustering instead of transmitting samples directly
was decreasing transmissions. In Table V, the savings are shown. In the first column,
the uncompressed, 12-bit per sensor data is transmitted, with results shown in Bytes
per second. For the next column, sensor data is first quantized (with nine possible
bins per sensor) then represented by two pieces of information: the quantized label
and duration of samples of that value. The results shown are the average entropy per
original sample. Coding methods, such as Huffman’s, come close to achieving entropy,
so this is a reasonable estimate of bandwidth. The final column is similar, except
instead of quantized sensor data, clustering is performed.

ACM Transactions on Embedded Computing Systems, Vol. 11, No. S2, Article 46, Publication date: August 2012.



46:14 E. Guenterberg et al.

Table IV. Results for an Independently Trained Subject 1

Action # States Accuracy # Actions Confusion
1 6 100% 12
2 5 100% 12
3 4 100% 11
4 4 100% 11
5 3 100% 10
6 5 100% 10
7 4 100% 5
8 4 100% 5
9 3 100% 5

10 3 80% 5 8:1
11a 4 60% 5 12b:2
11b 3 100% 5
12a 3 0% 5 11b:5
12b 3 100% 5

13 6 100% 5
14 7 67% 6 19a:1, 19b:1

15a 6 100% 5
15b 3 100% 5
16a 4 100% 5
16b 4 100% 5
17a 3 100% 6
17b 3 60% 5 18a:2
18a 1 80% 5 17b:1
18b 3 100% 5
19a 2 80% 5 11b:1
19b 3 100% 5
20a 2 60% 5 18a:1, 21a:1
20b 2 20% 5 10:1, 17a:1, 21b:2
21a 2 100% 5
21b 3 100% 5

22 10 100% 6
24 4 100% 5
25 4 100% 5

Total 90%

The savings are most dramatic when compression of any kind is applied; however,
clustering still reduces the bandwidth by about 75%.

5.4. Rejection Criterion

One application of this work is the life-logging application in which a participant wears
sensors for several days, and the system automatically creates a diary of actions per-
formed. Most classification systems, including our hidden Markov model, try to clas-
sify an action as being one of several possible actions. For life logging, many actions
are novel and should not be labeled as one of the training actions. This none of the
above labeling is also called a rejection criterion. There are several rejection strate-
gies. The most basic is to compute a confidence for each action and if the measure is
under a threshold, the action is rejected as not belonging to any known class [Kashi
et al. 1998]. Another strategy is to train one or more rejection classes on a variety of
data that is to be rejected. The prior probability of this class can be changed to raise
or lower the rejection threshold [Rosenberg et al. 1998]. In our work, we investigate
threshold-based methods.

As the model in this article already extracts the most likely sequence using the
Viterbi algorithm, a natural confidence measure is the log-likelihood probability of
a given action in the most likely sequence. The likelihood of the most likely state
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Fig. 4. Classification results for the action turn Clockwise 90◦.

Table V. Data Savings from Clustering

Subject Uncompressed (B/s) Samples Cmp. (B/s) Clustering Cmp. (B/s)
1 165.00 10.91 2.78
2 165.00 11.93 2.97
3 165.00 13.44 3.21

sequence decreases as the length of the sequence increases; therefore, it should be
normalized by the path length [Kashi et al. 1998].

As will be seen in the results, this rejection criterion using a fixed threshold led
to many false rejections and false recognitions. Looking at the state progression, as
seen in the state progression bar in Figure 4(a), correctly recognized actions tended
to spend approximately equal time in each state within the action, while incorrectly
recognized actions tended to linger on one state for most of the time, then go through
a rapid set of transitions to get to the next action. A simple way to quantify this is
to look at the entropy of the observed chain compared to the theoretical entropy of
the model. Entropy is maximized if all states have equal representation. Maximum
entropy is Hmax(x) = log |X | for x ∈ X . We set a threshold for negative entropy. The
action is accepted if

−k · log |X | ≥ −H(Si), (18)

where H(Si) is the entropy of the state sequence extracted by the Viterbi algorithm.
For testing several possibilities, movements 13–18b in Table I were removed from

the training set to provide a set of actions to be rejected. The highest possible entropy
is 0 for one state and goes up with the number of total states. To facilitate this mea-
sure, the models were constrained all to have five states per action. The results are
shown in Figure 5. In this diagram, the top portion is identical to the clustering dia-
grams. The bottom shows various rejection criteria. The red lines are the likelihood
of the current state and transition in the chain. The solid black lines are the average
likelihood probabilities for the entire action. The solid green line is the entropy rejec-
tion threshold and the dashed blue line is the observed entropy. The entropy threshold
is 80% of the expected entropy based on the trained model. For Figures 5(b) and 5(c),
the actions were not part of the training set. For this reason, the data all theoretically
represents non-actions (except for the postures); therefore, no ground truth data is
shown. In these figures, we expect the log likelihood and entropy measures to go down.
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Fig. 5. Rejection thresholds.

In Figure 5(a), the negative entropy is always below the threshold, so all relevant
actions are correctly identified. The actions in Figures 5(b) and 5(c) are part of the
rejection threshold. Some of the actions will be rejected by the entropy criterion,
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but others will not. Looking at the average log likelihood combined with the entropy
measure, it looks like sufficient evidence exists to reject. Movement 25 is shown in
Figure 5(d) to show the thresholds for a correctly identified movement in contrast to
the incorrect identifications for rejection class Movement 13.

5.5. Hardware Implementation

We recently implemented transcript generation on a set of sensor nodes based around
the hardware described in Section 3.1. The transcripts produced were consistent with
those produced in MATLAB.

6. CONCLUSION AND FUTURE WORK

In this article, we presented an action recognition framework based on an HMM which
is capable of both segmenting and classifying continuous movements. It is specifically
designed for the distributed architecture of body sensor networks and has modest run-
time requirements, which is essential for resource-limited sensor nodes. The accuracy
is consistent with results reported from similar experiments described in literature,
but below that of a k-NN system using manual segmentation. We also examined the
possibility of using thresholds based on log-probability and entropy to reject unknown
movements. The methods are promising, but further work is needed to perfect them.

For deployment, several additional steps must be taken. First, in a system designed
to monitor a subject throughout the day, many actions performed by the subject will not
represent any of the trained actions. The system will need to not only recognize known
actions but reject unknown actions. [Yoon et al. 2002] suggest a method based on
rejection thresholds that could be used. Second, this system needs to be implemented
on a BSN. Since our MATLAB tests proved successful, this is our next major step.
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