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Abstract— Reduction in power consumption has been an im-
portant concern in low-power and high-performance systems.
This paper addresses the problem of static voltage scaling in
such systems which is a well studied technique. In this paper
we present an optimal methodology for static voltage scaling.
Previous techniques, use path-based timing constraints in the
system model which requires exponential runtime even for prob-
lem generation. Our main contribution is the unified formulation
with linear number of constraints in the optimization problem as
opposed to the exponential number. This methodology results in
a fully polynomial time solvable problem.Our formulation can be
applied to dynamic voltage scaling on single or multiple resources
and moreover, it results in a convex optimization problem which
can be solved in fully polynomial time. We propose a general
formulation for bounded supply voltage assignments as well.
Furthermore, we present two heuristics to find and/or map
optimal voltages to discrete levels. We evaluated the performance
of our techniques on benchmarks from TGFF and MPEG4 video
encoder. An average of 43.96% power reduction was gained for
unbounded supply voltage assignment along with ~ 40% average
power saving where discrete voltage levels are available.

I. INTRODUCTION

Energy consumption is recognized as one of the most
important parameters in designing modern portable electronic
and wireless systems in todays very large scale integration
(VLSI) circuits. In CMOS digital circuits, power dissipation
consists of dynamic and static components. Since dynamic
power is proportional to the square of supply voltage V4 and
static power is proportional to Vg4, lowering Vg, is obviously
the most effective way to reduce power consumption.
Various voltage schemes have been proposed by researchers
for power optimization. A run-time dynamic voltage scaling
scheme for low-power real-time systems was proposed in [9].
This scheme employs software feedback control of supply
voltage, which is applicable to off-the-shelf processors and
provides power reduction by exploiting slack time arising from
workload variation. A simulation study on dynamic voltage
schemes was performed in [13].

As for static supply voltage assignments, several techniques
have been proposed. A dynamic programming technique for
solving the multiple supply voltage scheduling problem in
both non-pipelined and functionally pipelined data-paths was
proposed in [1]. The nature of their proposed method, however,
remains a heuristic. An O(n) algorithm is proposed in [3] for
assigning supply voltages to serially executing functional units

(FUs) in a digital system such that the overall dynamic energy
consumption is minimized for a given timing constraint. Their
model, however, cannot be applied to general computational
graphs. Another similar scheme is also proposed in [7].
A dual-threshold technique to reduce leakage power by assign-
ing a high-threshold voltage to some transistors in noncritical
paths, and using low-threshold transistors in critical path(s)
has been addressed in [17]. Despite the fact that their proposed
method is optimal, they only consider two voltage levels. Other
similar approach was studied in [12].
Dynamic threshold voltage scaling [10] for energy minimiza-
tion through an extra circuit was studied. Voltage Islands, a
scheme that can be used to reduce active and static power
consumption for System-on-Chips (SoC), was outlined in [8].
In [2], an optimum methodology for assigning supply and
threshold voltages to modules in a CMOS circuit to minimize
energy consumption was proposed. A similar technique at the
level of application specific modules mapped onto a processing
element as opposed to voltage assignment to circuit level
modules was suggested in [11]. In their problem formulations,
however, the number of constraints are proportional to the
number of paths in circuits, which can be exponential, while
our proposed technique does not have such a limitation. [19]
have used a more efficient formulation but again their approach
cannot be easily extended to more generalized systems like
those with path based constraints and local deadlines in digital
cuircuits.

II. POWER AND DELAY MODELS

Power dissipation for every processing element in a system
based on digital CMOS circuits is in the form of dynamic and
static. Dynamic power of each element can be represented as
in Equation (1).
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C; is the effective switching capacitance of the gate i, feiock
is the clock frequency, Vpp is the power supply voltage and
®, simply represents ZZ]\LI fetoek Ci. The sum is taken over all
the gates in the module. In this paper we investigate dynamic
power dissipation of CMOS based systems. The delay of each
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where K; and « are technology dependent parameters for
the i*" unit. Note that discarding V; in the above equation
is not necessarily a reasonable assumption. Specially with the
current low voltage technologies, Vpp and V; might be in the
same order of magnitude. Fortunately, our proposed method is
valid even with considering V;. In Section 3 we will see that
the only required condition on Equation 2 is it’s convexity
with respect to Vpp. Equation 2 satisfies this conditions even
with V; consideration. Throughout this work, we will use the
simplified form of Equation 2 for the sake of readability of
the paper. From Equations 1 and 2, we can deduce the direct
relation between power and delay of a unit:
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For 1 < a < 2 the above function is in convex form
with respect to d;. We assume a = 2 just to have simple
representation of for problem formulation whereas one can
use any feasible value for a.. Throughout the rest of the paper,
we use Equation 3 in which there is no direct notion of supply
voltage. We will assign delay values instead of supply voltage
and afterwards using Equation 2 we computer corresponding
voltage values.

III. PROBLEM FORMULATION

Intuitively, the voltage scaling problem can be stated as
a timing management problem in such a way that given an
application with distinct constituting blocks, the maximum
tolerable power reduction of individual blocks is desired while
the timing constraints of the system is not violated. Although
these blocks are often modeled as nodes in a directed acyclic
graph (DAG), the problem of voltage scaling on nodes is a
special case of a more general voltage scaling on edges. In
this section, we illustrate how the the delay budgeting on
nodes is transformed to delay budgeting on edges. Therefore,

we focus on delay budgeting on edges throughout the paper.
In high level synthesis, systems are usually modeled as a
directed acyclic graph G = (V,E). In this model, nodes
represent the operational modules and edges stand for the
precedence relation between them. We transform the given
graph G into G’ in such a way that, each node v in G is
spilt into two nodes v; and vy and an edge connecting v; to
vg. In the transformed graph, the new edges are basically the
modules from the original graphs. Figure 1 shows an example
of such transformation. In order to have a single input and a
single output, nodes s and ¢ have been added to the graph; s
is connected to all primary inputs and all primary outputs are
connected to .

Definition The delay of a path p =< s,v1,v3,...,t > from
node s to node t is equal to the summation of the delays of
each edge along the path. We use the terms delay of the path
and the distance between nodes s and ¢, interchangeably.

The problem is defined as: Given a DAG G = (V, E) and
a timing constraint 7’

minimize Z P 4)
Veij (S

such that the delay of every path from s to ¢ is less than
or equal to T'. P;; is the power consumption of ijt" edge in
the DAG which is a function of the delay of the edge, d;. The
timing constraint can be stated as: Ziem d; < T for every
path p; from s to t. Note that the number of paths in a DAG
is exponential in terms of the number of edges in the graph,
therefore this formulation is not efficient. Throughout the rest
of this section, we will convert it to a formulation with the
same objective function that has linear number of constraints.

Theorem 1: In the optimal voltage scaling of a DAG, the
distance between any node u and the output ¢ is independent
of the choice of the path taken between them and is unique.

Proof: Suppose the claim is not true, i.e. there exists a node

Fig. 2. Figure for Theorem 1

v where its distance to ¢ through path P; is less then P (see
Figure 2). The intuition behind the proof is that, larger delay
assigned to an edge yields in more power saving which is the
objective of the optimization problem. If P, is shorter than
P5, there exists an edge (e*) in P; that can be slowed down
and still not violate the timing constraint because P, is on the
critical path from v to £. One immediate candidate for e* is
the first edge in P;. Increasing the delay of e* by dp, — dp,
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will not cause a timing violation and therefore, reduces the
total power dissipation.

The following observation is immediately inferred from the
above theorem:

Corollary The delay of each path in the optimal solution
from the primary input node s to primary output node ¢ is
equal to 7T'.

Now that the distance of every node to the destination is
independent of the path taken, let ¢; be a variable assigned
to each node v; that represents its distance to ¢. A similar
technique was proposed in [4] which has resulted in an
efficient integer delay budgeting algorithm. We call ¢; the
distance variable of node v;. In other words, ¢; is the delay of
the system from node v; to the output. Therefore, the delay
and power consumption of each edge (node in the original
graph) is represented by:

dij :tiftj
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Thus, instead of having a constraint for each path from s
to ¢, we construct the following constraints:

hij(ti,tj) =t —t; >0,Ve;; € £ (5)

hst(tsatt) = ts — 1 < T (6)

Equation 5 enforces that the delay assigned to each edge is
positive and Equation 6 guarantees that the distance from s to
t is less than or equal to the timing constraint 7". Equation 6
can be interpreted as a minimum delay required for the virtual
edge between s and ¢. This edge is also shown in Figure 1.
All the timing constraints on paths are reformulated as edge
constraints and the optimization problem can be restated as:

K5
(ti —5)°

subject to constraints in Equations 5 and 6. The constraint in
6 enforces the timing constraint on the system. Equations 35,
6 and 7 form a nonlinear optimization problem with a linear
number of constraints in terms of the size of the graph. In
the next section we solve this problem using the Lagrange
Multipliers method.

minimizef f) = Z Dij

Ve ; €EE
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A. Convexity of the Optimization Problem

Global optimization is the task of finding the absolutely
best set of parameters to optimize an objective function.
In general, there exist solutions that are locally optimal
but not globally optimal. Consequently, global optimization
problems are typically quite difficult to solve; in the context
of combinatorial problems, they are often NP-hard. In convex
optimization problems, a locally optimal solution is also
globally optimal. These include LP problems; QP problems

where the objective is positive definite, if minimizing (and
negative definite if maximizing). Furthermore NLP problems
belong to the same class where the objective is a convex
function, if minimizing (and concave if maximizing) and
the constraints form a convex set [16]. In this section, we
will show that our proposed formulation, yields a convex
optimization problem.

Convex optimization problems are far more general than
linear programming problems, but they share the desirable
properties of LP problems: They can be solved quickly
and reliably even in very large size. A convex optimization
problem is a problem where all of the constraints are convex
functions and the objective is a convex function while
minimizing, or a concave function while maximizing. With a
convex objective and a convex feasible region, there can be
only one optimal solution, which is globally optimal. Several
proposed methods — notably Interior Point methods — can
either find the globally optimal solution, or prove that there
is no feasible solution to the problem.

First we need to show that the feasible solution space is in
fact convex. As seen in equations 5 and 6, all constraints are
linear which can be viewed as planes, bounding the solution
space. It is trivial that non-finite planes yield in a convex
solution space. To show the convexity of the objective function
(Equation 7), we will show that each term in f is convex and
because the sum of convex functions is convex, it suffices
to show that f;; = ¢; J(tKit)z is indeed convex. Note that

2fi; 6K7; 22fi; 6K7;
gz = Qig—yyr > 0 and St = dijg—y > 0.

This concludes the convexity of f;; and therefore the original
problem is a convex optimization problem.

B. Extension on Bounded Supply Voltages

The methodology described in Section III yields optimum
values of supply voltages for each module that minimizes
the overall system power dissipation. However, due to tech-
nological constraints, the assumption on unbounded supply
voltage assignment may not be feasible. In such cases, it is
desirable to have a lower/upper bound on the supply voltages
(which means for each edge in the transformed DAG model,
an upper/lower bound for the supply voltage is imposed). In
this section, we refine the formulation of Section III such that
the voltages assigned to each component can be chosen within
a specific range. Suppose the supply voltage for a module is
bounded by:

Vmin < VDD < Vma:p

As seen in Equation 2, V,,,;,, and V4, correspond to a maxi-
mum and minimum possible delay for that module, therefore:

dmin S d S dmaaj

Upper bounds on supply voltages (lower bound on delays
respectively) can easily be accommodated. In this case, con-
straints in Equations 5 can be rewritten as:

hij(ti tj) =ti —tj — dmin,; >0 ®)



Where dyin,; is the minimum allowable delay for the 4 jth
edge which corresponds to the largest available voltage for
module 77; Viyaq,,;- However, lower bounds on supply voltage
(upper bound on delays), are not as easy to handle in general.
The challenge is that Theorem 1 does not necessarily hold
for every graph which has upper bounds on delays assigned
to edges and therefore distance variables cannot be defined.
Figure 3 shows a simple example in which the upper bound for
delay on every edge is 2 and the total timing constraint of the
DAG is 7. As seen in the figure, minimum power consumption
is achieved when all edges are operating in minimum voltage
(maximum delay which is equal to 2) and in that solution, the
delay of leftmost and rightmost paths are not equal to each
other. Fortunately, we prove that the following lemma holds
and therefore we can still define distance variables.

Upper Bound on Delay = 2
P, Timing Constraint = 7

Fig. 3. An example showing how lover upper bounds on edge delay can
contradict Theorem 1

Lemma: The optimal voltage scaling of nodes in a DAG

will satisfy Theorem 1 on the transformed graph, where
voltage scaling is applied to the edges.

Operational Edge

Non-Operational Edge
(Communication Link)

Fig. 4. Node vg is adjacent to edges which have no delay bounds

Proof: As seen in the proof of Theorem 1, the branching
of two non-equal paths can only happen at the end point
of an edge which is a split node. Consider a node v in the
original graph G and its split in the transformed graph G’ as
illustrated in Figure 4. The outgoing edges from vy in G’ are
communication edges, not operational ones. Which means that
they just represent dependencies and there is no supply voltage
assigned to them. e, is basically the edge that represents node
v from the original problem. The set of outgoing edges from
ve do not consume power nor have any bound on delays.
Therefore, any delay can be assigned to these edges without
affecting the total power dissipation.

This fact ensures that the same proof for Theorem 1 still
holds. In other words, in an optimal voltage scaling, one can
assign “dummy” delays to these non operational edges just

to equalize path delays without increasing the total power
consumption. Therefore, distance variables can be defined
even with upper/lower bounds on the supply voltages. We add
the following timing constraint in presence of lower bounds
on supply voltages:

hlm (tiatj) =t; — tj < dmaxij (9)

where djpqz,; is the maximum allowable delay for the i jth
edge which is calculated from Equation 2 by substituting
Vinaz;; in Equation 2. Equation 6 will remain the same
global timing constraint as before. In this section, we outlined
that the bounded supply voltages can be handled with the
proposed formulation while still maintaining a linear number
of constraint.

To solve the above set of equations (Equations 7,5,6),
Lagrange dual function and constraints can be written as:

AEX) = PE) = > Aijhaj(ti b)) (10)
VeijeE
VAGX) =VP@E) = Y NijVhi(tit;) =0 (1)
Vei]’EE
V@ij ek, )\ij <0 (12)
> Nijh(tit;) =0 (13)
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This dual optimization problem can be solved efficiently by
Interior-point method which simply applies Newtons method
to a sequence of equality constraint problems.

IV. DISCRETE VOLTAGE MAPPING

In the previous section, we obtained an optimal voltage
assignment to modules in a system that minimizes the energy
consumption. These voltages might all have different values
and therefore result in large number of power supplies with
various voltage levels which may not be available. Current
technologies, allow the designer to utilize only a few number
of voltages. In this sections, we apply different heuristics to
map the optimal voltage assignments from the previous section
to a discrete set of values. Such problem is known to be NP-
hard [18]. We consider two different scenarios:

A. Fixed Supply Voltage Mapping (FSVM)

Assume a set of k possible voltages is given for a system:
V =< w1,vy,...,ux >. The objective is to find a mapping
F' from the set of optimal voltages obtained in the previous
section,Vopt, to V. We propose the following heuristic :For
each v;,,, we map v;,,, to v; where v; is the closest value
to v;,,,. Obviously, the timing constraint may be violated.
Iteratively, we find a node that lies in the maximum number
of critical paths, and increase its voltage to the next level.
We will call the first phase of this mapping algorithm NNM,
where each voltage is mapped to its nearest neighbor (Nearest
Neighbor Mapping). In the section of experimental results, we



will illustrate that even this simple NNM phase, yields a very
good power saving while the timing constraint is violated by
a small fraction.

B. Variable Supply Voltage Mapping (VSVM)

In this section, we assume that %k different voltage levels,
v1,...,U; may be used where k is given but their values
are unknown prior to the solution. The objective is to find
k voltage levels, along the mapping function F, such that
the overall power consumption is minimized. Therefore, we
propose the following method; we group the optimal voltages
into k groups and map the voltages in each group to the
maximum voltage in that group, such that the total square
distance of the voltages in a group to the maximum voltage in
the that group is minimized, (i.e. D = ) . (Vopt, — Vr(i))) i
minimized , where F' is the mapping function. We apply the
following iterative algorithm for this purpose.

procedure V.SV M

1: V' = sort(Vy)

2: Vi; F(i) = max(V,y), this is the initializing step
3:for j=1:k—1do

4: t«1,tis the index of the new voltage level
5:  while D is decreasing do

6: Vi <t,F(i) = V'[t]

7 t—t+1

8 recompute D

9:  end while

10: end for

After this grouping phase, the power consumption will
increase, because each voltage is mapped to a value larger than
or equal to optimal value. The new total delay of the DAG,
T’, is however decreased. Therefore, we scale all k voltage
levels by a factor of TTI This scaling increases the total delay

to T" while reducing the total power consumption.

V. EXPERIMENTAL RESULTS

Voltage assignment is applied to designs at various stages
of CAD flow. We apply voltage scaling to 15 benchmarks
generated by TGFF [14] and one real application: MPEG4
Video Encoder from [6]. TGFF benchmarks are used in [5],
[15] and [19] to demonstrate voltage scaling algorithms. In a
few interesting studies, gate level circuit benchmarks are used
[2] for experimental purpose. Although the results on those
benchmarks are quite promising, applying different voltages
in gate level with today’s technology may not be feasible.
Therefore, we used synthesized test benches (tgff 1 - tgff 15)
generated by TGFF. Table 1 and 2 summarize the experimental
results. The second column shows the characteristic of the
benchmarks in terms of number of nodes/number of edges
in each DAG. In the first experiment, we applied Lagrange
multiplier methods to our proposed formulation to get the
optimal voltage scaling. In Table 1, column three shows
the power reduction in percentile for the continuous voltage
scaling case. The results of NNM (simple voltage mapping as
discussed in Section IV) is presented in column 4 with three
voltage levels, along with the percentile of timing constraint

violation. Columns 2 and 3 in Table 2 correspond to power
reduction results when fixed supply voltage mapping (FSVM)
algorithm is applied, i.e. the timing constraint are met. Note
that increasing the number of predefined voltage level does
not necessarily result in more power reduction and the power
saving is totally dependent on what the voltage level values
are. In our experiments, we assumed that the predefined
voltage levels are equidistant. Power reduction from variable
supply voltage mapping (VSVM) algorithm is presented in
columns 4 and 5 of Table 2, assuming three and six voltage
levels are available.

Power Reduction with Respect to Optimal Answer vs. Number of
Voltage Levels
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Fig. 5. Effect of discrete voltage level number on power saving for all three
algorithms

Timing Constraint Violation vs. Number of Voltage Level in NNM

Timing Violation (%)
S
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Fig. 6. Improvement of timing constraint violation in NNM method
Optimal Power NNM only, £ = 3
Benchmark node/edge Reduction Power Reduction (%)
/
(%) Timing Violation (%)
teff 1 35/53 52.62 47.32/ 2.63
tgff 2 19/22 34.94 3237/ 444
tgff 3 34/47 41.03 43.15/ 12.21
teff 4 30/43 30.15 36.89/ 13.14
tgff 5 26/45 18.74 16.63/ 2.63
tgff 6 65/87 48.42 42.83/ 6.25
tgff 7 20/32 17.86 23.52/ 7.73
tgff 8 34/46 42.46 42.96/ 12.31
tgff 9 43/68 50.84 51.14/ 9.73
tgff 10 84/140 59.83 55.63/ 15.42
tgff 11 86/131 61.65 60.84/ 16.07
tgff 12 42/74 55.24 51.26/ 9.09
teff 13 83/139 58.75 60.74/ 14.34
tgff 14 19/27 30.05 43.33/19.11
tgff 15 50/68 56.77 48.05/ 8.42
Average 43.96 43.77/ 10.23
MPEG4 19.2 16.3 /542

Table 1: Power reduction compared to baseline for optimal voltage
scaling and nearest neighbor mapping technique

Increasing the number voltage levels, we observed that the
power reduction rapidly approaches to the optimal solution.
To justify this claim, we increased the number of voltage
levels to 15. Figure 5 illustrates the ratio of power reduction



in discrete scenarios to optimal case for all three cases: Series
1 represents NNM while and series 2 stands for the FSVM
approach. VSVM methodology is illustrated with series 3.
As seen in Figure 5, increasing the number of voltage levels
beyond 3, does not influence the power reduction for the
NNM algorithm drastically compared to other two scenarios,
instead the timing constraint violation is decreased. Figure 6
illustrated the average timing violation after applying NNM
algorithm. The importance of this graph is, although NMM is
a simple mapping algorithm, the resulting timing characteristic
is reasonably acceptable. An immediate observation from
Figure 6 is that the average timing constraint violation in
rapidly decreases while applying NNM algorithm with more
voltage levels.
VI. CONCLUSION

In this paper, we presented an optimal methodology for
static voltage scaling problem on low-power and high-
performance systems, and modeled the problem as a convex
optimization problem. Our methodology reduces problem size
from exponential to linear and can be solved in polynomial
time optimally. We also proposed a general formulation
for bounded supply voltage assignments and showed the
effectiveness of an optimal continuous solution even after
simple mapping algorithms. An average of 43.96% power
reduction was gained on benchmarks %enerated by TGFF
assuming unlimited number of voltage levels are available.
Moreover, for discrete voltage level scenarios, different
approaches are proposed. NNM resulted in 43.77% and
44.72% of power saving for three and six voltage levels
respectively. We also obtained an average of 34.62% and
40.23% of power reduction in the FSVM method while
maintaining the timing constraints. An average of 38.39%
and 41.64% power reduction is gained with VSVM method
for three and six voltage levels. In this paper, we illustrated
the efficiency of using the continuous optimal voltage scaling
for discrete case and observed that even limited number
of voltage levels (less that 8) can provide us with near
optimal power reduction. Also, we tested our methodology
on MPEG4 video decoder and gained 14.4% and average
of 17.6% in power saving for continuous and discrete
voltage levels, respectively. In future, the optimum voltage
scaling method may be extended for dynamic voltage
scheduling. Furthermore, developing design rules that assist
developers with voltage scheduling at the design stage may
be investigated. In addition, the effect of voltage level shifters
gn pergpr(rlnance and their related optimization problems may

e studied.

FSVM FSVM VSVM VSVM

Benchmark Power Power Power Power
Reduction (%) Reduction (%) Reduction (%) Reduction (%)

k=3 k=6 k=3 k=6
teff 1 44.23 51.64 46.72 52.06
teff 2 29.83 30.12 30.84 32.16
tgff 3 31.64 39.64 38.15 40.65
teff 4 26.12 28.33 24.63 28.64
teff 5 14.35 16.19 16.51 17.81
teff 6 37.83 4525 45.05 47.07
teff 7 15.75 17.32 16.00 17.34
teff 8 30.47 39.84 37.62 41.15
teff 9 42.01 47.83 48.97 50.13
tgff 10 42.90 52.17 49.83 53.76
tgff 11 47.32 54.53 50.14 55.98
tgff 12 44.38 50.44 50.63 52.74
tgff 13 46.21 51.03 51.52 54.38
teff 14 25.77 29.54 27.84 28.12
teff 15 40.11 49.70 41.36 52.60
Average 34.62 40.23 38.39 41.64
MPEG4 14.4 17.9 15.8 18.8

Table 2: Power reduction compared to baseline for fixed and variable supply voltage

mapping algorithms
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