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Abstract—This paper presents a human action recognition 

system that runs in real-time and uses a depth camera and an 

inertial sensor simultaneously based on a previously developed 

sensor fusion method. Computationally efficient depth image 

features and inertial signals features are fed into two 

computationally efficient collaborative representative classifiers. 

A decision-level fusion is then performed. The developed real-time 

system is evaluated using a publicly available multimodal human 

action recognition dataset by considering a comprehensive set of 

human actions. The overall classification rate of the developed 

real-time system is shown to be more than 97% which is at least 9% 

higher than when each sensing modality is used individually. The 

results from both offline and real-time experimentations 

demonstrate the effectiveness of the system and its real-time 

throughputs.  

 
Index Terms—Human action recognition, real-time human 

action recognition system, depth camera sensor, wearable inertial 

sensor, sensor fusion 

 

I. INTRODUCTION 

UMAN action recognition is finding its way into 

commercial products and is of benefit to many 

human-computer interface applications. Example applications 

include hand gesture interaction, smart assistive living, and 

gaming. Different sensors have been used to perform human 

action recognition. These sensors include conventional RGB 

cameras, e.g. [1-3], depth cameras, in particular Kinect, e.g. 

[4-7], and inertial sensors, e.g. [8-10].  

     In our previous works [11-13], it was shown that 

improvements in recognition rates can be achieved by 

combining or fusing the information from a depth camera and 

an inertial sensor over the situations when each of these sensors 

is used individually due to the complementary aspect of the 

information provided by these two differing modality sensors. 

In [13], we reported a human action recognition method which 

involved the development of depth motion map features and the 

utilization of a collaborative representation classifier. However, 

the experimental analysis reported in [13] was conducted based 

on the data that were collected simultaneously from the sensors. 
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In this paper, we have made modifications to the method 

reported in [13] in order to produce a human action recognition 

system which runs in real-time. These modifications include (i) 

adding a module to automatically detect the start and end of an 

action in real-time, (ii) modifying the fusion approach to reduce 

the computational complexity for real-time operation, (iii) 

carrying out  extensive experimentations in offline and 

real-time manner for both  subject-generic and subject-specific 

scenarios.  

The rest of the paper is organized as follows. In section II, an 

overview of the sensors and techniques used in our fusion 

method is provided. In section III, the modifications made in 

order to produce a real-time human action recognition system 

are presented. The experimental results for both offline and 

real-time recognition are included in section V. Finally, the 

conclusion appears in section VI. 

II. OVERVIEW OF SENSOR FUSION METHOD 

In this section, an overview of the sensors and techniques 

used in our fusion method in [13] is stated so that the stage is set 

for the modifications made in the next section towards enabling 

real-time operation.  

A. Sensors 

Kinect is a low-cost RGB-Depth camera sensor introduced 

by Microsoft for human-computer interface applications. It 

comprises a color camera, an infrared (IR) emitter, an IR depth 

sensor, a tilt motor, a microphone array, and an LED light. A 

picture of the Kinect sensor or depth camera is shown in Fig. 1. 

This sensor can capture 16-bit depth images with a resolution of 

320×240 pixels. Two example depth images are depicted in Fig. 

2. The frame rate is approximately 30 frames per second. In 

addition, the Kinect SDK [14] is a publicly available software 

package which can be used to track 20 body skeleton joints (see 

Fig. 3) and their 3D spatial positions.  

 

 
    

Fig. 1. Microsoft Kinect depth sensor. 
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Fig. 2. Example depth images from Kinect depth sensor. 

 

 
 

Fig. 3. Skeleton joints provided by Kinect depth sensor. 

 

The wearable inertial sensor used in this work is a small size 

(1”×1.5”) wireless inertial sensor built in the Embedded Signal 

Processing (ESP) Laboratory at Texas A&M University [15]. 

This sensor captures 3-axis acceleration, 3-axis angular 

velocity and 3-axis magnetic strength, which are transmitted 

wirelessly via a Bluetooth link to a laptop/PC. This wearable 

inertial sensor is shown in Fig. 4. The sampling rate of the 

sensor is 50 Hz and its measuring range is ±8g for acceleration 

and ±1000 degrees/second for rotation. It is worth mentioning 

that other commercially available inertial sensors can also be 

used in place of this inertial sensor. For practicality reasons or 

to avoid the intrusiveness associated with asking subjects to 

wear multiple inertial sensors, only one inertial sensor is 

considered in our work, either worn on the right wrist (similar 

to a watch) or the right thigh as depicted in Fig. 5 depending on 

the action of interest to be recognized in a particular application. 

More explanations about the placement of the sensor for 

different actions are stated in Section IV. Fig. 6 shows the 

inertial sensor signals (3-axis accelerations and 3-axis angular 

velocities) for the action right hand wave. 

 

 
 

Fig. 4. Wearable inertial sensor developed in the ESP Lab. 

 

 

 
 

Fig. 5. Inertial sensor placements: right wrist or right thigh. 

 

 
 

Fig. 6. Inertial sensor signals (3-axis accelerations and 3-axis angular 

velocities) for the action right hand wave. 

 

B. Feature Extraction 

To extract features from depth images, depth motion maps 

(DMMs) discussed in [7] are used due to their computational 

efficiency. More specifically, each 3D depth image in a depth 

video sequence is first projected onto three orthogonal 

Cartesian planes to generate three 2D projected maps 

corresponding to front, side, and top views, denoted by 𝑚𝑎𝑝𝑓, 

𝑚𝑎𝑝𝑠, and 𝑚𝑎𝑝𝑡 , respectively. For a depth video sequence with 

𝑁 frames, the DMMs are obtained as follows:  

                𝐷𝑀𝑀{𝑓,𝑠,𝑡} = ∑|𝑚𝑎𝑝{𝑓,𝑠,𝑡}
𝑖+1 − 𝑚𝑎𝑝{𝑓,𝑠,𝑡}

𝑖 |

𝑁−1

𝑖=1

,              (1) 

where 𝑖 represents frame index. A bounding box is considered 

to extract the non-zero region in each DMM and the foreground 

extracted DMMs are then used to serve as features. Since 

foreground DMMs of different video sequences may have 

different sizes, bicubic interpolation is applied to resize all such 

DMMs to a fixed size and thus to reduce the intra-class 

variability. An example set of DMMs for the action one hand 

wave is shown in Fig. 7. For the system developed in this paper, 

only the DMM generated from the front view, i.e. 𝐷𝑀𝑀𝑓, is 

processed in order to keep the computational complexity low 

towards achieving real-time throughputs.  
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Fig. 7. DMMs generated from a sample video of the action one hand 

wave. 

 

For the inertial sensor, each acceleration and gyroscope 

signal sequence is partitioned into 𝑀  temporal windows as 

reported in [16]. Three statistical features of mean, variance, 

and standard deviation are computed for each direction per 

temporal window. All the features from the temporal windows 

are concatenated to form a single combined feature vector. 

Thus, for 𝑀 windows, the feature vector dimensionality is 3 ×
𝑀 × 3 × 2 = 18𝑀. 

C. Collaborative Representation Classifier 

Collaborative representation classifier (CRC) [17] is a 

computationally efficient classifier that has been used in many 

image classification applications. Let 𝐶 denote the number of 

classes and 𝑿𝑗 ∈ ℝ𝐷×𝑛𝑗 denote the training samples of class j 

(each column of 𝑿𝑗 is a D-dimensional sample).  Also, let 𝑿 =

[𝑿1, 𝑿2, … , 𝑿𝐶] ∈ ℝ𝐷×𝑛  denote the set of all the training 

samples, where 𝑛 = 𝑛1 + ⋯ + 𝑛𝐶  is the total number of 

training samples. In this classifier, a test sample 𝒚 ∈ ℝ𝐷  is 

represented as a linear combination of all the training samples 

𝑿: 

                                               𝒚 = 𝑿𝜶,                                             (2) 

where 𝜶 is an 𝑛-dimensional coefficients vector corresponding 

to all the training samples from 𝐶 classes.  

    An 𝑙2-norm is then considered to regularize 𝜶 based on this 

optimization formulation 

                         𝜶̂ = arg min
𝜶

‖𝒚 − 𝑿𝜶‖2
2 + 𝜆‖𝜶‖2

2,                  (3) 

where 𝜆  is a regularization parameter. The 𝑙2 -regularized 

minimization of (3) is in the form of the Tikhonov 

regularization [18] leading to the following closed form 

solution: 

                                𝜶̂ = (𝑿𝑇𝑿 + 𝜆𝑰)−1𝑿𝑇𝒚.                              (4) 

     Let 𝑷 = (𝑿𝑇𝑿 + 𝜆𝑰)−1𝑿𝑇 . Given training sample set 𝑿 and 

with 𝜆 determined via these samples, 𝑷 is independent of a test 

sample 𝒚. Therefore, 𝑷 can be pre-computed as a projection 

matrix. Once a test sample arrives, the corresponding 

coefficient vector 𝜶̂  can be simply found via 𝑷𝒚 , which is  

computationally efficient. According to the class labels of the 

training samples, 𝜶̂  can be partitioned into 𝐶  subsets 𝜶̂ =
[𝜶̂1, 𝜶̂2, … , 𝜶̂𝐶]  where 𝜶̂𝑗  represents the coefficient vector 

associated with class 𝑗. The classification is made by 

                                    𝑙𝑎𝑏𝑒𝑙(𝒚) = arg min
𝑗

{𝑒𝑗},                         (5)  

where 𝑒𝑗 = ‖𝒚 − 𝑿𝑗𝜶̂𝑗‖
2
 denotes the residual error, and 𝒚̂𝑗 =

𝑿𝑗𝜶̂𝑗 indicates a class-specific representation of 𝒚.  

III. MODIFICATIONS MADE FOR REAL-TIME SYSTEM 

A. Detection of Action Start and End 

For real-time operation, it is necessary to identify the start 

and end of an action. Action segmentation is a challenging task. 

In our system, it is made a requirement that a subject performs 

an action naturally by completing the action without any pause 

in the middle of the action. Furthermore, it is required that an 

action begins with a static posture and ends with a static posture 

lasting for at least one second. For example, for the action right 

hand wave, a subject stands in front of the Kinect camera and 

wears the inertial sensor on his/her right wrist. The static 

posture is the stand still posture. These requirements allow the 

action segmentation to be performed in a computationally 

efficient manner. 

In our real-time system, the initial skeleton frames from the 

Kinect and the initial samples from the accelerometer for a one 

second duration are used to verify a static posture. Let 𝐽𝑠 =
(𝑥𝑠, 𝑦𝑠, 𝑧𝑠) denote the average 3D position of a static posture 

and  𝐴𝑠 = (𝑎_𝑥𝑠 , 𝑎_𝑦𝑠, 𝑎_𝑧𝑠)  its average accelerations. Note 

that one can easily obtain these static posture data before the 

actual real-time operation. When a subject starts an action, the 

position of a corresponding joint will deviate from the position 

of the static posture. The following distance between the 3D 

joint position 𝐽 = (𝑥, 𝑦, 𝑧) in a skeleton frame and 𝐽𝑠  is then 

computed   

               𝑑 = √(𝑥 − 𝑥𝑠)2 + (𝑦 − 𝑦𝑠)2 + (𝑧 − 𝑧𝑠)2.                (6) 

If for 𝑚𝑠  consecutive skeleton frames, all the distances are 

greater than a specified sensitivity 𝜎𝑑,  the start of an action is 

triggered. If for 𝑚𝑠  consecutive skeleton frames, all the 

distances are less than or equal to the specified sensitivity 𝜎𝑑, 

the end of an action is triggered. Fig. 8 illustrates the procedure 

of using skeleton joint positions to indicate the start and end of 

an action. The use of 𝑚𝑠 consecutive skeleton frames avoids 

responding to possible signal jitters. 

 

 
 

Fig. 8. Action segmentation illustration using skeleton joint positions. 

 

An example of a subject performing the action right hand 

wave is shown in Fig. 9. Fig. 9(a) exhibits the 3D positions of 

the right wrist over time. Fig. 9(b) exhibits the distance 𝑑 

between the right wrist position in each skeleton frame and the 

static posture 𝐽𝑠. As seen from Fig. 9, the distance 𝑑 reflects the 

change in the right wrist position. For this example, the starting 

point of the action occurs around the 25th frame and the ending 

point occurs around the 80th frame.  
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The sensitivity parameter 𝜎𝑑 essentially controls the desired 

level of detection sensitivity. If 𝜎𝑑  is set too high, the 

sensitivity to the start of an action is lowered resulting in a late 

start and an early end. If 𝜎𝑑 is set too low, the sensitivity to the 

end of an action is lowered resulting in an early start and a late 

end. In the results section, a subsection on parameter setting is 

provided giving guidelines as how to set this parameter.  

    For the inertial sensor, the acceleration signal is used as 

another clue to determine the start and end of an action. The 

accelerometer in the inertial sensor generates 3-axis 

acceleration signals. For an acceleration sample 𝐴 =

(𝑎_𝑥, 𝑎_𝑦, 𝑎_𝑧) , the magnitude 𝑀𝑎𝑐𝑐 = √𝑎𝑥
2 + 𝑎𝑦

2 + 𝑎𝑧
2  is 

computed and compared with the magnitude of the static 

posture 𝑀𝑠
𝑎𝑐𝑐 = √𝑎_𝑥𝑠

2 + 𝑎_𝑦𝑠
2 + 𝑎_𝑧𝑠

2 . This absolute 

magnitude difference between 𝐴  and 𝐴𝑠  is then computed  

𝑑𝑀
𝑎𝑐𝑐 = |𝑀𝑎𝑐𝑐 − 𝑀𝑠

𝑎𝑐𝑐| . The 3-axis acceleration signals of a 

sample right hand wave action are illustrated in Fig. 10(a) and 

the corresponding absolute magnitude difference in Fig. 10(b). 

Next, if all the distances 𝑑𝑀
𝑎𝑐𝑐  for 𝑚𝑎 consecutive accelerations 

are greater than a specified sensitivity 𝜎𝑎, the start of an action 

is triggered. If all the distances 𝑑𝑀
𝑎𝑐𝑐  for 𝑚𝑎  consecutive 

accelerations are less than or equal to the sensitivity 𝜎𝑎, the end 

of an action is triggered.  

Note that 𝑑  for each skeleton frame and 𝑑𝑀
𝑎𝑐𝑐  for each 

acceleration are computed, and the start and end of an action is 

detected when either one is triggered.  

 

 
 
Fig. 9. (a) 3D positions of the right wrist joint for right hand wave 

action, (b) corresponding joint position distance 𝑑  versus skeleton 

frame number. 

 

 
 
Fig. 10. (a) 3-axis acceleration signals from the inertial sensor placed 

on the right wrist for the action right hand wave, (b) corresponding 

absolute acceleration magnitude difference 𝑑𝑀
𝑎𝑐𝑐  versus sample 

number. 

 

As part of our real-time human action recognition system, 

depth videos, skeleton joint positions, and inertial sensor 

signals are generated in two software threads. One thread is 

used for simultaneous capture of depth videos and skeleton 

positions, and the other thread for the inertial sensor signals 

(3-axis acceleration and 3-axis rotation signals). For data 

synchronization, a time stamp for each sample is recorded. 

Since the frame rate of the Kinect camera and the sampling rate 

of the wearable inertial sensor are different, the start and end of 

an action are synchronized by using such time stamps. More 

specifically, when using skeleton positions to identify the start 

and end of an action, let the time stamp of the starting 

depth/skeleton frame of an action sequence be 𝑡𝐷
𝑠  and the time 

stamp of the ending depth/skeleton frame of an action sequence 

be 𝑡𝐷
𝑒 . Then, the two time stamps (denoted by 𝑡𝐼

𝑠 and 𝑡𝐼
𝑒) of the 

inertial sensor samples that are closest to 𝑡𝐷
𝑠  and 𝑡𝐷

𝑒  are used in 

order to identify the first and last sample of an action. The same 

procedure is applied when using acceleration signals to identify 

the start and end of an action. 

B. Fusion Method 

Two sets of features are generated and fused from depth 

images and inertial sensor signals. In our previous work [13], 

both the feature-level fusion and the decision-level fusion were 

examined. Although the feature-level fusion, i.e. concatenating 

two differing sets of features, was found simple and 

straightforward, it suffers from some shortcomings for 

real-time operation. First, the increase in the dimensionality of 

the fused feature vector increases the computational complexity 

for classification. Second, there exist incompatibilities with the 
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two sets of features. For example, the dimensionality of the 

depth feature vector (i.e. 𝐷𝑀𝑀𝑓  in vector form) is typically 

much higher than the inertial sensor signal feature vector. 

Moreover, the numerical ranges of the two sets of features 

differ significantly. For the system to be able to operate in 

real-time, the decision-level fusion is implemented here.  

For actual operation or testing of a sample 𝒚, 𝐹𝐾 and 𝐹𝐼 are 

generated and used individually as inputs to two CRC 

classifiers as described in [13]. As a result, two error vectors 

𝒆𝐾 = [𝑒1
𝐾 , 𝑒2

𝐾 , … , 𝑒𝐶
𝐾]  and 𝒆𝐼 = [𝑒1

𝐼 , 𝑒2
𝐼 , … , 𝑒𝐶

𝐼 ]  are generated, 

where 𝒆𝐾 corresponds to the error vector of the CRC classifier 

using 𝐹𝐾 and 𝒆𝐼 to the CRC classifier using 𝐹𝐼. To merge the 

outcomes of the two classifiers, the logarithmic opinion pool 

(LOGP) [19] technique is employed. LOGP provides a so 

called soft fusion at the posterior-probability level. In LOGP, 

the individual posterior probability 𝑝𝑞(𝜔|𝒚) of each classifier 

is used to estimate this global membership function 

                           𝑃(𝜔|𝒚) = ∏ 𝑝𝑞(𝜔|𝒚)𝛼𝑞 ,                                (7)

𝑄

𝑞=1

 

where 𝜔 ∈ [1, … , 𝐶] denotes a class label, 𝑄  the number of 

classifiers (𝑄 = 2 in our case), and with  𝛼𝑞 being uniformly 

distributed (that is, 𝛼𝑞 =
1

𝑄
). According to the residual output 

𝒆 = [𝑒1, 𝑒2, … , 𝑒𝐶], a Gaussian mass function  

                                   𝑝𝑞(𝜔|𝒚) = exp(−𝒆),                                (8) 

is then employed which indicates a smaller residual error 𝑒𝑗(𝑗 ∈

[1, … , 𝐶]) yields a higher probability 𝑝𝑞(𝜔|𝒚). Therefore, in 

the implemented decision-level fusion, this fused probability 

from the two classifiers is considered 

                  𝑃(𝜔|𝒚) = exp(−𝒆𝐾)
1

2 × exp(−𝒆𝐼)
1

2.                    (9) 

The final class label for 𝒚 is then assigned to the class with the 

largest probability 𝑃(𝜔|𝒚) with 𝒆𝐾 and 𝒆𝐼 normalized to [0,1]. 
Note that the LOGP fusion employed here is computationally 

more efficient than the Dempster-Shafer theory fusion [20] that 

was used in [13]. 

The flowchart of the real-time operation of the system is 

shown in Fig. 11. The detection of an action start and end is 

continuously performed. After detecting an action start, the 

fusion classification method is activated while monitoring for 

the action end. Note that the DMM gets computed frame by 

frame. The DMM feature computation is completed when the 

end of an action is detected.  

 

 
 

Fig. 11. Flowchart of the real-time human action recognition system.  

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Parameter Setting 

For action segmentation, appropriate values for the 

parameter 𝑚𝑠, 𝜎𝑑, 𝑚𝑎, and 𝜎𝑎 need to be set first. In [21], it 

was recommended making the start of an action within 4 

depth/skeleton frames of its actual start. In experiments 

reported in [22], a latency of 4 frames resulted in a perceived 

latency of 0 to 1 frame. Hence, the parameter 𝑚𝑠 corresponding 

to the number of consecutive frames was set to 4 in our 

experimentations. To set a proper value for 𝜎𝑑 , 60 skeleton 

frames in a static posture were used to calculate the mean 𝜇𝑑 of 

the distance 𝑑 in Eq. (6) between the wrist joint positions and 

𝐽𝑠. It was found that any sensitivity parameter  𝜎𝑑 in the range 

of [2𝜇𝑑, 5𝜇𝑑] led to an acceptable level of visual latency of less 

than 30ms. 

For acceleration signals, 𝑚𝑎 was set to 8 since the sampling 

rate of the inertial sensor was about twice the frame rate of the 

Kinect sensor. 100 acceleration samples in a static posture were 

used to calculate the mean 𝜇𝑎  of the difference signal 𝑑𝑀
𝑎𝑐𝑐 . 

Again, it was found that any 𝜎𝑎 in the range of [2𝜇𝑎, 5𝜇𝑎] led 

to an acceptable level of visual latency of less than 30ms. A 

similar approach was considered in [23] for action 

segmentation using acceleration and gyroscope signals. 

Furthermore, the same parameters reported in [24] were used 

here for the size of 𝐷𝑀𝑀𝑓  (i.e., 150×75) and the number of 

temporal windows (i.e., 𝑀= 6). As a result, the dimensionality 

of the depth feature vector and the inertial sensor feature vector 

were 11250 and 108, respectively. 

B. Offline Analysis 

This section includes various experimentations that were 

conducted to test our developed real-time human action 

recognition system. This system was first tested on the publicly 

available database called University of Texas at Dallas 

Multimodal Human Action Dataset (UTD-MHAD) [24]. The 

dataset can be downloaded from 

http://www.utdallas.edu/~kehtar/UTD-MHAD.html. 

UTD-MHAD consists of four temporally synchronized data 

modalities. These modalities include RGB videos, depth videos, 

skeleton positions from a Kinect camera sensor, and inertial 

signals from a wearable inertial sensor for a comprehensive set 

of 27 human actions encountered in the literature on human 

action recognition. The 27 actions are as follows: (1) right arm 

swipe to the left, (2) right arm swipe to the right, (3) right hand 

wave, (4) two hand front clap, (5) right arm throw, (6) cross 

arms in the chest, (7) basketball shoot, (8) right hand draw X, 

(9) right hand draw circle (clockwise), (10) right hand draw 

circle (counter clockwise), (11) draw triangle, (12) bowling 

(right hand), (13) front boxing, (14) baseball swing from right, 

(15) tennis right hand forehand swing, (16) arm curl (two 

arms), (17) tennis serve, (18) two hand push, (19) right hand 

knock on door, (20) right hand catch an object, (21) right hand 

pick up and throw, (22) jogging in place, (23) walking in place, 

(24) sit to stand, (25) stand to sit, (26) forward lunge (left foot 

forward), (27) squat (two arms stretch out). The 27 actions 

were performed by 8 subjects (4 females and 4 males). Each 

subject repeated each action 4 times. After removing three 
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corrupted sequences, the dataset includes 861 data sequences. 

Sample shots of the 27 actions in the UTD-MHAD are shown 

in Fig. 12. The wearable inertial sensor was placed on the 

subjects’ right wrists for actions (1) through (21) which were 

hand type movements, and on the subjects’ right thigh for 

actions (22) through (27) which were leg type movements.  

 

 
 
Fig. 12. Sample shots of the 27 actions in the UTD-MHAD database. 

 

To demonstrate the advantages of sensor fusion or using 

depth and inertial sensors together for human action 

recognition, two types of experiments based on UTD-MHAD 

were performed. The first experiment is named subject-generic. 

More specifically, leave one subject out test was carried out. In 

other words, each time a subject was used as the testing subject 

(i.e., the action samples associated with this subject were 

regarded as testing samples) and the remaining seven subjects 

were used as the training subjects (i.e., the action samples 

associated with these seven subjects were regarded as training 

samples), which resulted in an 8-fold cross validation. The 

name subject-generic is used here as there was no training 

samples associated with the testing subject. Under this 

experimental setting, the classification performance was 

examined using the Kinect depth features only, the inertial 

sensor features only, and the combination of the depth and 

inertial sensor features (decision-level fusion). Fig. 13 displays 

the class-specific recognition rates and the overall recognition 

rate of these three situations. Note that the class-specific 

recognition rates and the overall recognition rate appearing in 

this figure are the averages over the 8 subjects (i.e., 8-fold cross 

validation). As evident from this figure, the fusion improved 

the classification performance by more than 15% over the 

situations when each sensor was used individually.  

In the second experiment, the samples from only one subject 

were divided into a training and a testing set. Since each subject 

had performed an action 4 times in the database, the first two 

samples of each action was used to form the training set and the 

remaining samples to form the testing set. In this case, all the 

training and testing samples were associated with the same 

subject. This is named the subject-specific experiment. This 

experimental setting was repeated for all the 8 subjects. Again, 

the three situations of Kinect sensor only, inertial sensor only, 

and Kinect and inertial sensor fusion were examined. The 

results obtained are shown in Fig. 14. As evident from Fig. 14, 

the fusion led to a superior classification performance 

compared to the situations when using the Kinect sensor only or 

the inertial sensor only. The overall recognition rate of the 

fusion reached 97.2% which, as expected, was higher than the 

recognition rate in the subject-generic experiment. This is 

because since the training and testing samples were from the 

same subject, the intra-class variation was less compared to the 

subject-generic experiment. The larger intra-class variation in 

the subject-generic experiment occurred due to different body 

sizes (e.g., heights) of the subjects in the depth images and 

different subjects performing the same actions differently.  

From Fig. 14, it can be seen that the fusion approach 

improved the classification rates for the great majority of the 

actions. For some actions, e.g., draw X, boxing and tennis serve, 

the fusion  resulted in the same classification rates as when 

using the Kinect sensor only or inertial sensor only. However, 

for the three actions of clap, draw circle counter clockwise, and 

jogging, the classification rates of the fusion became lower than 

when using the Kinect sensor only or the inertial sensor only. 

This was caused by the fused probability of these three actions 

not favoring the actual class. An example of this case is shown 

in Fig. 15. In this example, an action C7 was correctly classified 

by using the Kinect sensor features since the class C7 had the 

highest probability of 0.9. The probability of the class C7 

however was 0.4 when using the inertial sensor features. By 

fusing the probability outputs from the Kinect and the inertial 

sensor, the probability of the class C6 was made the highest 

(0.8×0.8=0.64) which in turn was higher than the probability of 

the class C7 (0.9×0.4=0.36), leading to the selection of the 

wrong class when using the fused probability output. Although 

for these three actions, the fusion did not improve the 

classification rates, it is important to note that only one or two 

misclassified samples for these actions occurred for the total 

number of 16 testing samples in these classes.     
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Fig. 13. Classification performance (recognition rates per action class and overall recognition rate) when using Kinect sensor only, inertial sensor 

only, and Kinect and inertial sensors fusion for the subject-generic experiment. 

 

 
 
Fig. 14. Classification performance (recognition rates per action class and overall recognition rate) when using Kinect sensor only, inertial sensor 

only, and Kinect and inertial sensors fusion for the subject-specific experiment. 

 

 

 
 
Fig. 15. A misclassification case using Kinect and inertial sensor 

fusion. 

 

To further show the classification performance, the 

confusion matrices corresponding to the three scenarios of the 

subject-specific experiment are shown in Figures 16 through 18. 

In these figures, the 27 actions are numbered for a compact 

display of the matrices. The diagonal elements in the matrices 

indicate the correctly classified number of samples for the 

actions. The sum of each row indicates the total number of 

samples for the corresponding action. By comparing these three 

confusion matrices, it can clearly be seen that the fusion 

achieved higher overall classification performance compared to 

using each sensor individually.  

 

 
 
Fig. 16. Recognition confusion matrix when using Kinect sensor only.  
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Fig. 17. Recognition confusion matrix when using inertial sensor only. 

 

 
 
Fig. 18. Recognition confusion matrix when using Kinect and inertial 

sensors fusion. 

C. Real-Time Operation Results 

In this subsection, the results of our developed human action 

recognition system for a typical real-time run are provided. 

Five subjects participated in the results reported here while 

running the system in real-time. Each subject was first asked to 

perform the actions twice for the system training purposes or 

the generation of training samples. A typical training time of 

the system was less than a minute once the training session was 

over. The testing or actual operation of the system occurred in 

real-time. The same subject performed the actions twice during 

the testing. As it was mentioned earlier, in general, the 

subject-specific scenario leads to higher classification 

performance and it is deemed more appropriate to use in 

commercial products. It is worth emphasizing here that each 

subject performed the actions naturally and followed the action 

segmentation requirements. 

The confusion matrix of a real-time run of the system for the 

five subjects is shown in Fig. 19. As can be seen from this 

figure, the real-time results were similar to the offline analysis 

results based on the UTD-MHAD dataset. 

The real-time human action recognition system was 

programmed using Microsoft Visual Studio 2012 (C/C++). The 

system runs in real-time on a typical modern desktop computer. 

The computer used had a 3.4 GHz Intel Core i7 CPU with 8 GB 

RAM. The processing time of the major components of the 

program is listed in Table I, indicating achieving real-time 

throughputs. A video clip of the system running in real-time can  

be viewed at 

http://www.utdallas.edu/~kehtar/FusionDemo.wmv  

 
TABLE I 

PROCESSING TIMES TAKEN BY THE MAJOR COMPONENTS OF  
THE REAL-TIME SYSTEM 

 
System components Average processing time (ms) 

DMM computation 0.48 / frame 

Inertial feature extraction 0.61 / sample 

Fusion classification  2.8 / sample 

 

 
 
Fig. 19. Real-time recognition confusion matrix. 

V. CONCLUSION 

In this paper, a real-time fusion system for human action 

recognition has been developed that uses data from two 

differing modality sensors: vision depth and inertial. The 

system merges the probability outputs of the features from 

these two differing modality sensors in real-time via a 

decision-based fusion method involving collaborative 

representation classifiers. The extensive experimental results 

reported have indicated the effectiveness of the system towards 

recognizing human actions in real-time compared to the 

situations when using each sensor individually. In our future 

work, we plan to examine specific applications of the fusion 

framework presented in this paper by using depth cameras and 

wearable inertial sensors that have recently become 

commercially available including the second generation Kinect 

depth camera [25], Texas Instruments time-of-flight depth 

camera [26], Google Tango miniaturized depth camera [27], 

Samsung Gear [28], and Apple Watch [29].  
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