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Abstract

We propose a distributed recognition method to classify
human actions using a low-bandwidth wearable motion sen-
sor network. Given a set of pre-segmented motion sequences
as training examples, the algorithm simultaneously segments
and classifies human actions, and it also rejects outlying ac-
tions that are not in the training set. The classification is
distributedly operated on individual sensor nodes and a base
station computer. We show that the distribution of multiple
action classes satisfies a mixture subspace model, one sub-
space for each action class. Given a new test sample, we
seek the sparsest linear representation of the sample w.r.t. all
training examples. We show that the dominant coefficients in
the representation only correspond to the action class of the
test sample, and hence its membership is encoded in the rep-
resentation. We further provide fast linear solvers to compute
such representation via `1-minimization. Using up to eight
body sensors, the algorithm achieves state-of-the-art 98.8%
accuracy on a set of 12 action categories. We further demon-
strate that the recognition precision only decreases grace-
fully using smaller subsets of sensors, which validates the
robustness of the distributed framework.

1. Introduction
We study human action recognition using a distributed

wearable motion sensor network. Action recognition has
been studied to a great extent in computer vision in the past.
Compared with a model-based or appearance-based vision
system, the body sensor network approach has the following
advantages: 1. The system does not require to instrument the
environment with cameras or other sensors. 2. The system
has the necessary mobility to support continuous monitoring
of a subject during her daily activities. 3. With the continuing
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miniaturization of mobile processors and sensors, it has be-
come possible to manufacture wearable sensor networks that
densely cover the human body to record and analyze very
small movements of the human body (e.g., breathing and
spine movements). Such sensor networks can be used in ap-
plications such as medical-care monitoring, athlete training,
tele-immersion, and human-computer interaction (e.g., inte-
gration of accelerometers in Wii game controllers and smart
phones).

Figure 1. A wireless body sensor system.

In traditional sensor networks, the computation carried by
the sensor board is fairly simple: Extract certain local in-
formation and transmit the data to a computer server over
the network for processing. In this paper, we propose a new
method for distributed pattern recognition. In such system,
each sensor node will be able to classify local, albeit biased,
information. Only when the local classification detects a pos-
sible object/event does the sensor node become active and
transmit the measurement to the server.1 On the server side,
a global classifier receives data from the sensor nodes and
further optimizes the classification. The global classifier can
be more computationally involved than the distributed clas-

1Studies have shown that the power consumption required to success-
fully send one byte over a wireless channel is equivalent to executing be-
tween 1e3 and 1e6 instructions on an onboard processor [18]. Hence it is
paramount in sensor networks to reduce the communication cost while pre-
serve the recognition performance.
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sifiers, but it has to adapt to the change of available network
sensors due to local measurement error, sensor failure, and
communication congestion.

Past studies on sensor-based action recognition were pri-
marily focused on single accelerometers [8, 10] or other mo-
tion sensors [11, 16]. More recent systems prefer using mul-
tiple motion sensors [1, 2, 9, 12–14, 17]. Depending on the
type of sensor used, an action recognition system is typically
composed of two parts: a feature extraction module and a
classification module.

There are three major directions for feature extraction in
wearable sensor networks. The first direction uses simple
statistics of a signal sequence such as the max, mean, vari-
ance, and energy. The second type of feature is computed
using fixed filter banks such as FFT and wavelets [10, 16].
The third type is based on classical dimensionality reduc-
tion techniques such as principal component analysis (PCA)
and linear discriminant analysis (LDA) [13, 14]. In terms of
classification on the action features, a large body of previ-
ous work favored thresholding or k-nearest-neighbor (kNN)
due to the simplicity of the algorithms for mobile devices
[10, 16, 17]. Other more sophisticated techniques have also
been used, such as decision trees [2, 3] and hidden Markov
models [13].

For distributed pattern recognition, there exist studies on
distributed speech recognition [20] and distributed expert
systems [15]. One particular problem associated with most
distributed sensor systems is that each local observation from
the distributed sensors is biased and insufficient to classify
all classes. For example in our system, the sensors placed
on the lower-body would not perform well to classify those
actions that mainly involve upper body motions, and vice
versa. Consequently, traditional majority-voting type clas-
sifiers may not achieve the best performance globally.

Design of the wearable sensor network. Our wearable
sensor network consists of sensor nodes placed at various
body locations, which communicate with a base station at-
tached to a computer server through a USB port. The sen-
sor nodes and base station are built using the commercially
available Tmote Sky boards. Tmote Sky runs TinyOS on an
8MHz microcontroller with 10K RAM and communicates
using the 802.15.4 wireless protocol. Each custom-built sen-
sor board has a triaxial accelerometer and a biaxial gyro-
scope, which is attached to Tmote Sky (shown in Fig 2).
Each axis is reported as a 12bit value to the node, indicating
values in the range of ±2g and ±500◦/s for the accelerome-
ter and gyroscope, respectively.

To avoid packet collision in the wireless channel, we use a
TDMA protocol that allocates each node a specific time slot
during which to transmit data. This allows us to receive sen-
sor data at 20Hz with minimal packet loss. To avoid drift in
the network, the base station periodically broadcasts a packet

Figure 2. The sensor board with the accelerometer and gyroscope.
The mother board at the back is Tmote Sky.

to resynchronize the nodes’ individual timers. The code to
interface with the sensors and transmit data is implemented
directly on the mote using nesC, a variant of C.

Problem definition. Assume a set of L wearable sen-
sor nodes with triaxial accelerometers and biaxial gyro-
scopes are attached to the human body. Denote al(t) =
(xl(t), yl(t), zl(t), θl(t), ρl(t))T ∈ R5 as the measurement
of the five sensors on node l at time t, and a(t) =
(aT1 (t),aT2 (t), · · · ,aTL(t))T ∈ R5L collects all sensor mea-
surement. Denote s = (a(1),a(2), · · · ,a(l)) ∈ R5L×l as
an action sequence of length l.

Given K different classes of human actions, a set of ni
training examples {si,1, · · · , si,ni} are collected for each ith
class. The durations of the sequences naturally may be differ-
ent. Given a new test sequence s that may contain multiple
actions and possible other outlying actions, we seek a dis-
tributed algorithm to simultaneously segment the sequence
and classify the actions.

Solving this problem mainly involves the following chal-
lenges:

1. Simultaneous segmentation and classification. We seek
simultaneous segmentation and recognition from a long
motion sequence. Furthermore, we also assume that the
test sequence may contain other unknown actions that
are not from the K classes. The algorithm needs to be
robust to these outliers.

2. Variation of action durations. One major difficulty in
segmentation of actions is to determine the duration of
a proper action. In practice, the durations of different
actions vary dramatically (see Fig 3).

Figure 3. Population of different action durations in our data set.



Figure 4. Readings of the x-axis accelerometers (top) and x-axis gyroscopes (bottom) from 8 distributed sensors (shown in different colors)
on two repetitive “stand-kneel-stand” sequences from two subjects as the left and right columns.

3. Identity independence. In addition to the variation of
action durations, different people act differently for the
same actions (see Fig 4). For a test sequence in the ex-
periment, we examine the identity-independent perfor-
mance by excluding the training samples of the same
subject.

4. Distributed recognition. A distributed recognition sys-
tem needs to further consider the following issues: 1.
How to extract compact and accurate low-dimensional
action features for local classification and transmission
over a band-limited network? 2. How to classify the lo-
cal measurement in real time using low-power proces-
sors? 3. How to design a classifier to globally optimize
the recognition and be adaptive to the change of the net-
work?

Contributions of the paper. We propose a distributed ac-
tion recognition algorithm that simultaneously segments and
classifies 12 human actions using up to 8 wearable motion
sensors. The work is inspired by an emerging theory of
compressed sensing and sparse representation [4, 5]. We as-
sume each action class satisfies a low-dimensional subspace
model. We show that a 10-D LDA feature space suffices to
locally represent the 12 action subspaces on each node. If a
linear representation is sought to represent a valid test sam-
ple w.r.t. all training samples, the dominant coefficients in
the sparsest representation correspond to the training sam-
ples from the same action class, and hence they encode the
membership of the test sample. The implementation of the
system consists of three integrated components: 1. Multi-
resolution action feature extraction. 2. Fast distributed clas-
sifiers via `1-minimization. 3. An adaptive global classifier.
The method can accurately segment and classify human ac-
tions from a continuous motion sequence. The local classi-
fiers that reject potential outliers reduce the sensor-to-server
communication to about 50%. One can also choose to ac-
tivate only a subset of the sensors on the fly due to sensor
failure or network congestion. The global classifier is able to
adaptively update the optimization process and improve the
overall classification upon available local decisions.

Finally, the research of action recognition using wearable

sensors in pattern recognition has been hindered to an extent
by a lack of rigorous and public database/benchmark in or-
der to judge the performance and safeguard the reproducibil-
ity of extant algorithms. We intend to address this issue
by constructing and maintaining a public benchmark system
called “Wearable Action Recognition Database” (WARD).
The database will contain more human subjects across multi-
ple age groups, and it will be made available on our website.

2. Classification via Sparse Representation
We first present an efficient action classification method

on each sensor node assuming action sequences are pre-
segmented. Given an action segment of length l from node j,
sj = (aj(1),aj(2), · · · ,aj(l)) ∈ R5×l, define a new vector
sSj as the stacking of the l columns of sj :

sSj
.= (ai(1)T ,ai(2)T , · · · ,ai(l)T )T ∈ R5l. (1)

We will interchangeably use sj to denote the stacked vector
sSj without causing ambiguity.

Since the length l varies among different subjects and ac-
tions, we need to normalize l to be the same for all the train-
ing and test samples, which can be achieved by linear inter-
polation or FFT interpolation. After normalization, we de-
note the dimension of samples sj as Dj = 5l. Subsequently,
we define a full-body action vector v that stacks the measure-
ment from all L nodes:

v = (sT1 , s
T
2 , · · · , sTL)T ∈ RD, (2)

where D = D1 + · · ·+DL = 5lL.
In this paper, we assume the samples v in an action

class satisfy a subspace model, called an action subspace.
If the training samples {v1, · · · ,vni

} of the ith class suf-
ficiently span the ith action subspace, given a test sample
y = (yT1 , · · · ,yTL)T ∈ RD in the same class i, y can be
linearly represented using the training examples of the same
class:

y = α1v1 + · · ·+ αni
vni

⇔

 y1
y2

...
yL

 =

 s1
s2

...
sL


1

· · ·

 s1
s2

...
sL


ni

 α1
α2

...
αni

 .
(3)



It is important to note that such linear constraint also holds
on each node j: yj = α1sj,1 + · · ·+ αnisj,ni ∈ RDj .

In theory, complex data such as human actions typically
constitute complex nonlinear models. The linear models are
used to approximate such nonlinear structures in a higher-
dimensional subspace (see Fig 5). Notice that such lin-
ear approximation may not produce good estimation of the
distance/similarity metric for the samples on the manifold.
However, as we will show in Example 1, given sufficient
samples on the manifold as training examples, a new test
sample can be accurately represented on the subspace, pro-
vided that any two classes do not have similar subspace mod-
els.

Figure 5. Modeling a 1-D manifold M using a 2-D subspace V .

To recover label(y), a previous study [19] proposed to
reformulate the recognition using a global sparse represen-
tation: Since label(y) = i is unknown, we can represent y
using all the training samples from all K classes:

y = (A1, A2, · · · , AK)

 x1
x2

...
xK

 = Ax, (4)

where Ai = (vi,1,vi,2, · · · ,vi,ni
) ∈ RD×ni collects all the

training samples of class i, xi = (αi,1, αi,2, · · · , αi,ni
)T ∈

Rni collects the corresponding coefficients in (3), and A ∈
RD×n where n = n1 + n2 + · · · + nK . Since y satisfies
both (3) and (4), one solution of x in (4) should be x∗ =
(0, · · · , 0,xTi , 0, · · · , 0)T . The solution is naturally sparse:
in average only 1

K terms in x∗ are nonzero.
On each sensor j, solution x∗ of (4) is also a solution for

the representation:

yj = (A(j)
1 , A

(j)
2 , · · · , A(j)

K )x = A(j)x, (5)

where A(j)
i ∈ RDj×ni consists of row vectors in Ai that

correspond to the jth node. Hence, x∗ can be solved ei-
ther globally using (4) or locally using (5), provided that the
action data measured on each node are sufficiently discrimi-
nant. We will come back to the discussion about local clas-
sification versus global classification in Section 3. In the rest
of this section however, our focus will be on each node.

One major difficulty in solving (5) is the high dimension-
ality of the action data. In compressed sensing [4, 5], one
reduces the dimension of a linear system by choosing a lin-

ear projection Rj ∈ Rd×Dj :2

ỹj
.= Rjyj = RjA

(j)x
.= Ã(j)x ∈ Rd. (6)

After projection Rj , typically the feature dimension d is
much smaller than the number n of all training samples.
Therefore, the new linear system (6) is underdetermined. Nu-
merically stable solutions exist to uniquely recover sparse so-
lutions x∗ via `1-minimization [6]:

x∗ = arg min ‖x‖1 subject to ỹj = Ã(j)x. (7)

In our experiment, we have tested multiple projection op-
erators including PCA, LDA, and random project studied
in [19]. We found that 10-D feature spaces using LDA lead
to best recognition in a very low-dimensional space.

After the (sparsest) representation x is recovered, we
project the coefficients onto each action subspaces

δi(x) = (0, · · · , 0,xTi , 0, · · · , 0)T ∈ Rn, i = 1, · · · ,K.
(8)

Finally, the membership of the test sample yj is assigned to
the class with the smallest residual

label(yj) = arg min
i
‖ỹj − Ã(j)δi(x)‖2. (9)

Example 1 (Classification on Nodes) We designed 12 ac-
tion categories in the experiment: Stand-to-Sit, Sit-to-
Stand, Sit-to-Lie, Lie-to-Sit, Stand-to-Kneel, Kneel-to-Stand,
Rotate-Right, Rotate-Left, Bend, Jump, Upstairs, and Down-
stairs. The detailed experiment setup is given in Section 4.

To implement `1-minimization on the sensor node, we
look for fast sparse solvers in the literature. We have tested
a variety of methods including (orthogonal) matching pur-
suit (MP), basis pursuit (BP), LASSO, and a quadratic log-
barrier solver.3 We found that BP [7] gives the best trade-off
between speed, noise tolerance, and recognition accuracy.

Here we demonstrate the accuracy of the BP-based algo-
rithm on each sensor node (see Fig 1 for their locations). The
actions are manually segmented from a set of long motion se-
quences from three subjects. In total there are 626 samples
in the data set. The 10-D feature selection is via LDA. We re-
quire the classification to be identity-independent. The accu-
racy of the classification is shown in Table 1. Fig 6 shows an
example of the estimated sparse coefficients x and its resid-
uals. In terms of the speed, our simulation in MATLAB takes
in average 0.03s to process one test sample on a typical 3G
Hz PC.

Example 1 shows that if the segmentation of the actions
is known and there is no other invalid samples, all sensor

2Notice that Rj is not computed on the sensor node. These matrices are
computed offline and simply stored on each sensor node.

3The implementation of these routines in MATLAB is available via
SparseLab: http://sparselab.stanford.edu



Table 1. Recognition accuracy on each node over 12 action classes.
Sen # 1 2 3 4 5 6 7 8

Acc [%] 99.9 99.4 99.9 100 95.3 99.5 93 100

Figure 6. Left: Sparse `1 solution by BP for a Stand-to-Sit action
on the waist node. Right: Corresponding residuals. The action is
correctly classified as Class 1. SCI(x) = 0.7 (see (10)).

nodes can recognize the 12 actions individually with very
high accuracy, which also verifies that the mixture subspace
model is a good approximation of the action data. Neverthe-
less, one may question that in such low-dimensional feature
spaces other classical methods (e.g., kNN and decision tree
methods) should also perform well. In the next section, we
will show that the major advantage of adopting the sparse
representation framework is a unified solution to recognize
and segment valid actions and reject invalid ones. We will
also show that the method is adaptive to the change of avail-
able sensor nodes on the fly.

3. Distributed Segmentation and Recognition
We start by introducing multi-resolution action segmen-

tation on each sensor node. From the training examples,
we can estimate a range of possible lengths for all actions
of interest. We then evenly divide the range into multi-
ple length hypotheses: (h1, · · · , hs). At each time t in a
motion sequence, the node tests a set of s possible seg-
mentations: y(1) = (a(t − h1), · · · , a(t)), · · · ,y(s) =
(a(t− hs), · · · , a(t)), as shown in Fig 7.4 With each candi-
date y again normalized to length l, a sparse representation
x is estimated using `1-minimization in Section 2.

Figure 7. Multiple segmentation hypotheses on a wrist sensor at
time t = 150 of a “go downstairs” sequence. h1 is a good segment
while others are false segments. Notice that the movement between
250 and 350 is an outlying action that the subject performed.

Based on the previous sparsity assumption, if y is not a
valid segmentation w.r.t. the training examples due to either
incorrect t or h, or the real action performed is not in the

4Those segmentation hypotheses that overlap with previously detected
actions will be ignored to avoid temporal ambiguity.

training classes, the dominant coefficients of its sparsest rep-
resentation x should not correspond to any single class. We
use a sparsity concentration index (SCI) [19]:

SCI(x) .=
K ·maxj=1,··· ,K ‖δj(x)‖1/‖x‖1 − 1

K − 1
∈ [0, 1].

(10)
If the nonzero coefficients of x are evenly distributed among
K classes, then SCI(x) = 0; if all the nonzero coefficients
are associated with a single class, then SCI(x) = 1. There-
fore, we introduce a sparsity threshold τ1 applied to all sen-
sor nodes: If SCI(x) > τ1, the segment is a valid local
measurement, and its 10-D LDA features ỹ will be sent to
the base station.

Figure 8. A invalid representation (SCI=0.13).

Next, we introduce a global classifier that adaptively op-
timizes the overall segmentation and classification. Sup-
pose at time t and with a length hypothesis h, the base
station receives L′ action features from the active sensors
(L′ ≤ L). Without loss of generality, assume these fea-
tures are from the first L′ sensors: ỹ1, ỹ2, · · · , ỹL′ . Let
ỹ′ = (ỹT1 , · · · , ỹTL′)T ∈ R10L′

. Then the global sparse rep-
resentation x of ỹ′ satisfies the following linear system

ỹ′ =

(
R1 ··· 0 ··· 0

...
. . .

...
...

0 ··· RL′ ··· 0

)
Ax = R′Ax = Ã′x, (11)

where R′ ∈ RdL′×D is a new projection matrix that only
extracts the action features from the first L′ nodes. Conse-
quently, the effect of changing active sensor nodes for the
global classification is formulated via the global projection
matrix R′. During the transformation, the data matrix A and
the sparse representation x remain unchanged. The linear
system (6) then becomes a special case of (11) when L′ = 1.

Similar to the outlier rejection criterion we previously
proposed on each node, we introduce a global rejection
threshold τ2. If SCI(x) > τ2 in (11), the most significant
coefficients in x are concentrated in a single training class.
Hence ỹ′ is assigned to that class, and its length hypothesis
h provides the segmentation of the action from the motion
sequence.

The overall algorithm on the nodes and on the network
server provides a unified solution to segment and classify ac-
tion segments from a motion sequence using only two simple
parameters τ1 and τ2. Typically τ1 is selected to be less re-
stricted than τ2 in order to increase the recall rate, because
passing certain amounts of false signal to the global classi-



fier is not necessarily disastrous as the signal would be re-
jected by τ2 when the action features from multiple nodes
are jointly considered. The formulation of adaptive classifi-
cation (11) via a global projection matrix R′ and two spar-
sity constraints τ1 and τ2 provides a simple means of reject-
ing outliers from a network of multiple sensors. The method
compares favorably to other classical methods such as kNN
and decision trees, because these methods need to train mul-
tiple thresholds and decision rules when the number L′ and
the set of available sensors vary in the full-body action vector
ỹ′ = (ỹT1 , · · · , ỹTL′)T .

Finally, we consider how the change of active nodes af-
fects `1-minimization and the classification of the actions. In
compressed sensing, the efficacy of `1-minimization in solv-
ing for the sparsest solution x in (11) is characterized by the
`0/`1 equivalence relation [6, 7]. A necessary and sufficient
condition for the equivalence to hold is the k-neighborliness
of Ã′. As a special case, one can show that if x is the sparsest
solution in (11) for L′ = L, x is also a solution for L′ < L.
Hence, the decrease of L′ leads to possible sparser solutions
of x.

On the other hand, the decrease in available action fea-
tures also makes ỹ′ less discriminant. For example, if we
reduce L′ = 1 and only activate a wrist sensor, then the `1-
solution x may have nonzero coefficients associated to mul-
tiple actions with similar wrist motions, albeit sparser. This
is an inherent problem for any method to classify human ac-
tions using a limited number of motion sensors. In theory,
if two action subspaces in a low-dimensional feature space
have a small subspace distance after the projection, the cor-
responding sparse representation cannot distinguish the test
samples from the two classes. We will demonstrate in Sec-
tion 4 that indeed reducing the available motion sensors will
reduce the discriminant power of the sparse representation in
a lower-dimensional space.

4. Experiment
We validate the performance of the system using a data

set we collected from three male subjects at the age of 28, 30,
and 32, respectively. Eight wearable sensors were placed at
different body locations (see Fig 1). We designed a set of 12
action classes: Stand-to-Sit (StSi), Sit-to-Stand (SiSt), Sit-to-
Lie (SiLi), Lie-to-Sit (LiSi), Stand-to-Kneel (StKn), Kneel-
to-Stand (KnSt), Rotate-Right (RoR), Rotate-Left (RoL),
Bend, Jump, Upstairs (Up), and Downstairs (Down). We
are particularly interested in testing the system under various
action durations. For this purpose, we have asked the sub-
jects to perform StSi, SiSt, SiLi, and LiSi with two differ-
ent speeds (slow and fast), and perform RoR and RoL with
two different rotation angles (90◦ and 180◦). All subjects
were asked to perform a sequence of related actions in each
recording session based on their own interpretation of the ac-
tions. In total there are 626 actions performed in the data set

(see Table 3 for the numbers in individual classes).
Table 2 shows Precision versus Recall of the algorithm

with different active sensor nodes. For all experiments,
τ1 = 0.2 and τ2 = 0.4. When all nodes are activated, the
algorithm can achieve 98.8% accuracy among the actions it
extracted, and 94.2% of the true actions are detected. The
performance decreases gracefully when more nodes become
unavailable to the global classifier. Our results show that if
we can maintain one motion sensor on the upper body (e.g.,
at position 2) and one on the lower body (e.g., at position 7),
the algorithm can still achieve 94.4% precision and 82.5%
recall. Finally, in average the 8 distributed classifiers that
reject invalid local measurements reduce the node-to-station
communication for above 50%.

Table 2. Precision vs. recall with different sets of activated sensors.
Sensors 2 7 2,7 1,2,7 1- 3, 7,8 1- 8
Prec [%] 89.8 94.6 94.4 92.8 94.6 98.8
Rec [%] 65 61.5 82.5 80.6 89.5 94.2

One may be curious about the relatively low recall on sin-
gle sensors such as 2 and 7. This performance difference
is due to the large number of potential outlying segments
presented in a long motion sequence (e.g., see Fig 7). We
further compare the difference using two confusion tables
3 and 4. We see that a single node 2 that is positioned on
the right wrist performed poorly mainly on two action cate-
gories: Stand-Kneel and Upstairs-Downstairs, both of which
involve significant movements of the lower body but not the
upper one. This is the main reason for the low recall in Ta-
ble 2. On the other hand, for the actions that are detected
using node 2, our system can still achieve about 90% accu-
racy, which clearly demonstrates the robustness of the dis-
tributed recognition framework. Similar arguments also ap-
ply to node 7 and other sensor combinations.

Table 3. Confusion table using sensors 1-8.

Finally, we provide examples of the classification results
on Subject 1 to demonstrate the accuracy of the proposed al-
gorithm using all 1 - 8 sensor nodes. For clarity, each figure
in Fig 9 - 21 only plots the readings from x-axis accelerome-
ters on the 8 nodes. The segmentation results are then super-
imposed. The black solid boxes indicate the locations of the



Table 4. Confusion table using sensor 2.

correctly classified action segments. The red boxes (e.g., in
Fig 14) indicate the locations of false classification. One can
also observe from the figures that some valid actions are not
detected by the algorithm, e.g., in Fig 13.

Figure 9. Segmentation of a slow Stand-Sit-Stand sequence.

Figure 10. Segmentation of a fast Stand-Sit-Stand sequence.

Figure 11. Segmentation of a slow Sit-Lie-Sit sequence.

Figure 12. Segmentation of a fast Sit-Lie-Sit sequence.

Figure 13. Segmentation of a Bend sequence.

Figure 14. Segmentation of a Stand-Kneel-Stand sequence.

Figure 15. Segmentation of a 90◦ Rotate-Right-Left sequence.

Figure 16. Segmentation of a 90◦ Rotate-Left-Right sequence.

Figure 17. Segmentation of a 180◦ Rotate-Right sequence.

Figure 18. Segmentation of a 180◦ Rotate-Left sequence.

Figure 19. Segmentation of a Jump sequence.

Figure 20. Segmentation of a Go-Upstairs sequence.

Figure 21. Segmentation of a Go-Downstairs sequence.



5. Conclusion and Discussion

Inspired by the emerging compressed sensing theory, we
have proposed a distributed algorithm to segment and clas-
sify human actions on a wearable motion sensor network.
The framework provides a unified solution based on `1-
minimization to classify valid action segments and reject out-
lying actions on the sensor nodes and the base station. We
have shown through our experiment that a set of 12 action
classes can be accurately represented and classified using a
set of 10-D LDA features measured at multiple body loca-
tions. The proposed global classifier can adaptively adjust
the global optimization to boost the recognition upon avail-
able local measurements.

One limitation in the current system and most other body
sensor systems is that the wearable sensors need to be firmly
positioned at the designated locations. However, a more
practical system/algorithm should tolerate certain degrees
of shift without sacrificing the accuracy. In this case, the
variation of the measurement for different action classes
would increase substantially. One open question is what low-
dimensional linear/nonlinear models one may use to model
such more complex data, and whether the sparse representa-
tion framework can still apply to approximate such structures
with limited numbers of training examples. A potential solu-
tion to this question will be a meaningful step forward both
in theory and in practice.
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